Table of Contents

1 Introduction ... 3

1.1 Change History ... 3

1.2 Product Contents .. 5

1.3 System Requirements ... 5

1.4 Documentation .. 6

1.5 Technical Support .. 6

2 Installation ... 6

2.1 Activation of Purchase after Evaluation Using the Intel Activation Tool 7

2.2 Using a License Server .. 7

2.3 Installation Folders .. 7

2.4 Relocating Product After Install ... 9

2.5 Removal/Uninstall .. 9

3 Intel® Fortran Compiler ... 9

3.1 Compatibility .. 9

3.1.1 Stack Alignment Change for REAL(16) and COMPLEX(16) Datatypes 10

3.2 New and Changed Features .. 10

3.2.1 Features from Fortran 2003 .. 10

3.2.2 Features from Fortran 2008 .. 10

3.2.3 Static Security Analysis Feature (formerly Source Checker) Requires Intel® Inspector XE ... 11

3.2.4 New and Changed Directives (Update 6) ... 11

3.2.5 OpenMP Changes (Update 6) ... 11

3.2.6 Other Changes .. 11

3.3 New and Changed Compiler Options ... 12
1 Introduction
This document describes how to install the product, provides a summary of new and changed product features and notes about features and problems not described in the product documentation.

Intel® Fortran Composer XE 2011 is the next release of the product formerly called Intel® Fortran Compiler Professional Edition.

1.1 Change History
This section highlights important changes in product updates of Intel® Fortran Composer XE 2011 for Mac OS X:
Update 9

- Intel® Fortran Compiler updated to 12.1.3
 - --assume std=intent in option added
- Intel® Math Kernel Library updated to 10.3 Update 9
- Added note about building for debugging on OS X 10.7 “Lion”
- Corrections to reported problems

Update 8

- Intel® Fortran Compiler updated to 12.1.2
- Intel® Math Kernel Library updated to 10.3 Update 8
- Corrections to reported problems

Update 7

- Intel® Fortran Compiler updated to 12.1.1
- Intel® Math Kernel Library updated to 10.3 Update 7
 - Intel® MKL Notices updated to include more deprecations
- Corrections to reported problems

Update 6

- Mac OS* X 10.5 is no longer supported
- The product installs into a new top-level folder
- Intel® Fortran Compiler updated to 12.1.0
 - Additional Fortran 2003 and Fortran 2008 features supported
 - Additional compiler options
 - Additions and enhancements to general directives
 - Enhancements to OpenMP* support
 - For this update, the core compiler documentation known as the User and Reference Guides has been reorganized and streamlined. Among the most noticeable changes are: a new Key Features section highlighting important Intel compiler functionality and the organization of the Compiler Option reference section into functional groups.
- Intel® Math Kernel Library updated to 10.3 Update 6
- Corrections to reported problems

Update 5

- Mac OS* X 10.7 with Xcode* 4.1 supported
- Intel® Fortran Compiler updated to 12.0.5
- Intel® Math Kernel Library updated to 10.3 Update 5
- Corrections to reported problems

Update 4
• Intel® Fortran Compiler updated to 12.0.4.
• Intel® Math Kernel Library updated to 10.3 Update 4
• Mac OS* X 10.6.7 is now supported with Xcode* 4.0.
• Corrections to reported problems

Update 3

• Mac OS* X 10.6.6 is now supported with Xcode* 3.2.5. Support for Mac OS 10.5 "Leopard" is deprecated and will be removed in a future release.
• Intel® Fortran Compiler updated to 12.0.3
 o The –sox option now accepts optional keywords specifying information to include and the default behavior has changed
• Intel® Math Kernel Library updated to 10.3 Update 3
• Corrections to reported problems

Update 2

• Intel® Fortran Compiler updated to 12.0.2
• Intel® Math Kernel Library updated to 10.3 Update 2
• Corrections to reported problems

Update 1

• Intel® Fortran Compiler updated to 12.0.1
• Intel® Math Kernel Library updated to 10.3 Update 1
• Corrections to reported problems

Intel® Fortran Composer XE 2011 Product Release

• Initial product release

1.2 Product Contents

Intel® Fortran Composer XE 2011 for Mac OS* X includes the following components:

• Intel® Fortran Compiler XE 12.1.3 for building applications that run on Intel-based Mac* systems running the Mac OS* X operating system
• Intel® Debugger 12.1.3
• Intel® Math Kernel Library 10.3 Update 9
• Integration into the Xcode* development environment (Limited Feature)
• On-disk documentation

1.3 System Requirements

• An Intel®-based Apple* Mac* system
• 1GB RAM minimum, 2GB RAM recommended
• 2GB free disk space
• One of the following combinations:
Note: Advanced optimization options or very large programs may require additional resources such as memory or disk space.

1.4 Documentation
Product documentation can be found in the Documentation folder as shown under Installation Folders.

<table>
<thead>
<tr>
<th>Optimization Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.</td>
</tr>
</tbody>
</table>

Notice revision #20110804

1.5 Technical Support
If you did not register your compiler during installation, please do so at the Intel® Software Development Products Registration Center. Registration entitles you to free technical support, product updates and upgrades for the duration of the support term.

For information about how to find Technical Support, Product Updates, User Forums, FAQs, tips and tricks, and other support information, please visit: http://www.intel.com/software/products/support/

Note: If your distributor provides technical support for this product, please contact them for support rather than Intel.

2 Installation
The installation of the product requires a valid license file or serial number. If you are evaluating the product, you can also choose the “Evaluate this product (no serial number required)” option during installation.
If you will be using Xcode*, please make sure that a supported version of Xcode is installed. If you install a new version of Xcode in the future, you must reinstall the Intel Fortran Compiler afterwards.

You will need to have administrative or “sudo” privileges to install, change or uninstall the product.

If you received the compiler product on DVD insert the DVD. Locate the disk image file (xxx.dmg) on the DVD and double-click. If you received the compiler product as a download, double-click the downloaded file. When the disk image opens, double-click on the xxx.mpkg file to begin installation.

Follow the prompts to complete installation.

Note that there are several different downloadable files available, each providing different combinations of components. Please read the download web page carefully to determine which file is appropriate for you.

You do not need to uninstall previous versions or updates before installing a newer version – the new version will coexist with the older versions.

2.1 Activation of Purchase after Evaluation Using the Intel Activation Tool

Note for evaluation customers: a new tool Intel Activation Tool "ActivationTool" is included in this product release and installed at /opt/intel/composer_xe_2011_SP1.x.xxx/Activation directory.

If you installed the product using an Evaluation license or serial number (SN), or using the “Evaluate this product (no serial number required)” option during installation, and then purchased the product, you can activate your purchase using the Intel Activation Tool at /opt/intel/composer_xe_2011_SP1.x.xxx/Activation/Activation Tool. It will convert your evaluation software to a fully licensed product. To use the tool:

```
$ /opt/intel/composer_xe_2011_SP1.x.xxx/Activation/Activation Tool [SN_here]
```

2.2 Using a License Server

If you have purchased a “floating” license, see http://intel.ly/oPEdEe for information on how to install using a license file or license server. This article also provides a source for the Intel® License Manager for FLEXlm* product that can be installed on any of a wide variety of systems.

2.3 Installation Folders

The compiler installs, by default, under /opt/intel – this is referenced as <install-dir> in the remainder of this document. You are able to specify a different location. If Xcode integration is installed, a second copy of these files is present under /Developer/opt/intel.

The directory organization has changed since the Intel® Compilers 11.1 release. While the top-level installation directory has also changed between the original Intel Fortran Composer XE
2011 release and Composer XE 2011 Update 6, the composerxe symbolic link can still be used to reference the latest product installation.

Under <install-dir> are the following directories:

- **bin** – contains symbolic links to executables for the latest installed version
- **lib** – symbolic link to the lib directory for the latest installed version
- **include** – symbolic link to the include directory for the latest installed version
- **man** – symbolic link to the directory containing man pages for the latest installed version
- **mkl** – symbolic link to the directory for the latest installed version of Intel® Math Kernel Library
- **composerxe** – symbolic link to the composerxe_2011_sp1 directory
- **composer_xe_2011_sp1** – directory containing symbolic links to subdirectories for the latest installed Intel® Composer XE 2011 product release
- **composer_xe_2011_sp1.<n>.<pkg>** - physical directory containing files for a specific compiler version. <n> is the update number, and <pkg> is a package build identifier.

Each composer_xe_2011_sp1 directory contains the following directories that reference the latest installed Intel® Composer XE 2011 product:

- **bin** – directory containing scripts to establish the compiler environment and symbolic links to compiler executables for the host platform
- **pkg_bin** – symbolic link to the compiler bin directory
- **include** – symbolic link to the compiler include directory
- **lib** – symbolic link to the compiler lib directory
- **mkl** – symbolic link to the mkl directory
- **debugger** – symbolic link to the debugger directory
- **man** – symbolic link to the man directory
- **Documentation** – symbolic link to the Documentation directory
- **Samples** – symbolic link to the Samples directory

Each composer_xe_2011_sp1.<n>.<pkg> directory contains the following directories that reference a specific update of the Intel® Composer XE 2011 compiler:

- **bin** – all executables
- **compiler** – shared libraries and header files
- **debugger** – debugger files
- **man** – man pages
- **Documentation** – documentation files
- **mkl** – Intel® Math Kernel Library libraries and header files
- **Samples** – Product samples and tutorial files
If you have both the Intel C++ and Intel Fortran compilers installed, they will share folders for a given version and update.

This directory layout allows you to choose whether you want the latest compiler, no matter which version, the latest update of the Intel® Composer XE 2011 compiler, or a specific update. Most users will reference <install-dir>/bin for the compilervars.sh [.csh] script, which will always get the latest compiler installed. This method should remain stable for future releases.

2.4 Relocating Product After Install
The Xcode integration is relocatable simply by dragging and dropping the Xcode directory tree to another location. If you wish to use idb from a command prompt using a relocated Xcode directory tree, please see http://intel.ly/q3Fl3R for additional steps that are required. Note that idb is not available from within the Xcode IDE.

2.5 Removal/Uninstall
It is not possible to remove the compiler while leaving any of the performance library components installed.

1. Open Terminal and set default (cd) to any folder outside <install-dir>
2. Type the command:
 <install-dir>/composer_xe_2011_sp1.<n>.<pkg>./uninstall_fcompxe.sh
3. Follow the prompts

If you are not currently logged in as root you will be asked for the root password.

3 Intel® Fortran Compiler
This section summarizes changes, new features and late-breaking news about the Intel Fortran Compiler.

3.1 Compatibility
In general, object code and modules compiled with earlier versions of Intel Fortran Compiler for Mac OS* X may be used in a build with version 12. Exceptions include:

- Sources that use the CLASS keyword to declare polymorphic variables and which were built with a compiler version earlier than 12.0 must be recompiled.
- Objects built with the multi-file interprocedural optimization (-ipo) option must be recompiled.
- Objects that use the REAL(16), REAL*16, COMPLEX(16) or COMPLEX*32 datatypes and which were compiled with versions earlier than 12.0 must be recompiled.
- Objects built for the Intel® 64 architecture with a compiler version earlier than 10.0 and that have module variables must be recompiled. If non-Fortran sources reference these
variables, the external names may need to be changed to remove an incorrect leading underscore.

- Modules that specified an ATTRIBUTES ALIGN directive and were compiled with versions earlier than 11.0 must be recompiled. The compiler will notify you if this issue is encountered.

3.1.1 Stack Alignment Change for REAL(16) and COMPLEX(16) Datatypes

In releases prior to compiler version 12.0, when a REAL(16) or COMPLEX(16) (REAL*16 or COMPLEX*32) item was passed by value, the stack address was aligned at 4 bytes. For improved performance, the version 12.0 (and later) compiler aligns such items at 16 bytes and expects received arguments to be aligned on 16-byte boundaries.

This change primarily affects compiler-generated calls to library routines that do computations on REAL(16) values, including intrinsics. If you have code compiled with earlier versions and link it with the version 12.0 (or later) libraries, or have an application linked to the shared version of the Intel run-time libraries, it may give incorrect results.

In order to avoid errors, you must recompile all Fortran sources that use the REAL(16) and COMPLEX(16) datatypes.

3.2 New and Changed Features

3.2.1 Features from Fortran 2003

- FINAL subroutines
- GENERIC keyword for type-bound procedures
- A generic interface may have the same name as a derived type
- Bounds specification and bounds remapping list on a pointer assignment
- ALLOCATE with SOURCE= (polymorphic source supported in Update 6)

3.2.2 Features from Fortran 2008

- Maximum array rank has been raised to 31 dimensions (Fortran 2008 specifies 15)
- CONTIGUOUS attribute
- MOLD keyword in ALLOCATE
- DO CONCURRENT
- NEWUNIT keyword in OPEN
- G0 and G0.d format edit descriptor
- Unlimited format item repeat count specifier
- A CONTAINS section may be empty
- Intrinsic procedures BESSEL_J0, BESSEL_J1, BESSEL_JN, BESSEL_YN, BGE, BGT, BLE, BLT, DSHIFTL, DSHIFTR, ERF, ERFC, ERFC_SCALED, GAMMA, HYPOT, IALL, IANY, IPARITY, IS_CONTIGUOUS, LEADZ, LOG_GAMMA, MASKL, MASKR,
MERGE_BITS, NORM2, PARITY, POPCNT, POPPAR, SHIFTA, SHIFTL, SHIFTR, STORAGE_SIZE, TRAILZ,

- Additions to intrinsic module ISO_FORTRAN_ENV: ATOMIC_INT_KIND, ATOMIC_LOGICAL_KIND, CHARACTER_KINDS, INTEGER_KINDS, INT8, INT16, INT32, INT64, LOGICAL_KINDS, REAL_KINDS, REAL32, REAL64, REAL128
- (Update 6) An OPTIONAL dummy argument that does not have the ALLOCATABLE or POINTER attribute, and which corresponds to an actual argument that: has the ALLOCATABLE attribute and is not allocated, or has the POINTER attribute and is disassociated, or is a reference to the intrinsic function NULL, is considered not present
- (Update 6) A dummy argument that is a procedure pointer may be associated with an actual argument that is a valid target for the dummy pointer, or is a reference to the intrinsic function NULL. If the actual argument is not a pointer, the dummy argument shall have the INTENT(IN) attribute.

3.2.3 Static Security Analysis Feature (formerly Source Checker) Requires Intel® Inspector XE
The “Source Checker” feature, from compiler version 11.1, has been enhanced and renamed “Static Security Analysis”. The compiler options to enable Static Security Analysis remain the same as in compiler version 11.1 (for example, -diag-enable sc), but the results are now written to a file that is interpreted by Intel® Inspector XE rather than being included in compiler diagnostics output.

3.2.4 New and Changed Directives (Update 6)
The following compiler directives are new or changed in Intel® Composer XE 2011 Update 6 – please see the documentation for details:

- ATTRIBUTES VECTOR
- NOFUSION
 - You can now specify a FIRSTPRIVATE clause in the PARALLEL directive
 - You can now specify a FIRSTPRIVATE or LASTPRIVATE clause in the SIMD directive

3.2.5 OpenMP Changes (Update 6)
The following changes to OpenMP* support are in Intel® Composer XE 2011 Update 6:

- OpenMP 3.1 is supported
- TASKYIELD directive
- New clauses have been added to the ATOMIC directive
- You can now specify FINAL and MERGEABLE clauses in the TASK directive

3.2.6 Other Changes
- The ability to create a source listing file with identifier cross-reference has been added
- The ability to generate a build dependencies output file has been added
- An option to use math library functions that are faster but return results with less precision or accuracy
• An option to use math library functions that return consistent results across different models and manufacturers of processors

3.3 New and Changed Compiler Options
Please refer to the compiler documentation for details.

3.3.1 New and Changed in Composer XE 2011 Update 6 (and later)
• -align [no]qcommons
• -assume [no]std_intent_in
• -f[no-]asynchronous-unwind-tables
• -xCORE-AVX-I
• -xCORE-AVX2
• -f[no-]merge-debug-strings
• -fopenmp
• -gdwarf-3
• -march=atom
• -march=core-avx-i
• -march=core-avx2
• -march=corei7-avx
• -march=corei7
• -march=Pentium-m
• -opt-mem-layout-trans[=n]
• -xCORE-AVX-I
• -xCORE-AVX2
• -xSSSE3_ATOM

3.3.2 New and Changed in Composer XE 2011 (through Update 5)
• -assume [no]fpe_summary
• -assume [no]old_ldout_format
• -fzero-initialized-in-bss
• -fimf-absolute-error
• -fimf-accuracy-bits
• -fimf-arch-consistency
• -fimf-max-error
• -fimf-precision
• -fvar-tracking
• -fvar-tracking-assignments
• -gen-dep
• -gen-depformat
• -guide
• -guide-data-trans
• -guide-file
• -guide-file-append
- -guide-opts
- -guide-par
- -guide-vec
- -list
- -list-line-len
- -list-page-len
- -opt-args-in-regs
- -par-runtime-control
- -prof-value-profiling
- -profile-functions
- -profile-loops-report
- -show=keyword
- -simd
- -sox=keyword
- -standard-semantics

For a list of deprecated compiler options, see the Compiler Options section of the documentation.

3.3.3 –assume [no]std_intent_in added (Update 9)
The –assume [no]std_intent_in option determines whether the compiler assumes that dummy arguments with the INTENT(IN) attribute are not modified across a call, in accordance with the Fortran standard. The default is std_intent_in, allowing the compiler to assume that INTENT(IN) arguments are not modified; nostd_intent_in tells the compiler not to make such assumptions. –standard-semantics implies –assume std_intent_in.

3.3.4 Additional Keywords for –sox option, default changed (Update 3)
The –sox option, which adds information to the object and executable file about compiler options used and procedure profiling information, has been enhanced to let the user request that the list of inlined functions be included and to let the user exclude information about procedure profiling.

The syntax for –sox is now:

- [no-]sox
- sox=keyword[,keyword]

Where keyword is one of inline or profile. If –sox is specified with no keywords, only the command line options are included – this is a change from previous releases. To maintain the previous behavior, use –sox=profile. Multiple –sox options may be specified on the command line – if so, they are interpreted in left-to-right order.
3.4 Other Changes

3.4.1 Environment Setup Script Changed
The `compilervars.sh` script is used to establish the compiler environment.

The command takes the form:

```
source <install-dir>/bin/compilervars.sh argument
```

Where `xxx` is the package identifier and `argument` is either `ia32` or `intel64` as appropriate for the architecture you are building for. Establishing the compiler environment also establishes the environment for the Intel® Debugger, Intel® Performance Libraries and, if present, Intel® C++ Compiler.

3.4.2 RANF Portability Function Is Now an Intrinsic
The RANF function in the portability library is a non-standard random number generator. As of the version 12.0 compiler, RANF is an intrinsic function with a new, higher-performance implementation. If your program has added USE IFPORT to provide access to RANF, no changes will be seen and you will get the older version. If your program does not have USE IFPORT, or you add INTRINSIC RANF, you will get the new version that returns a different sequence, for a given seed, than the older version. The portability subroutine SRAND is still used to set the seed for RANF. Intel recommends use of the standard intrinsic RANDOM_NUMBER, but RANF is provided for compatibility with applications already using it.

3.5 Known Issues

3.5.1 Errors on Mac OS X 10.6 “Snow Leopard” When COMMON Block Shares Name With Library Routine
On Mac OS X 10.6 “Snow Leopard”, Fortran programs that declare COMMON blocks may have unexpected behavior, including “bus error”, if the COMMON block shares a name with a routine in a static library that is linked against. For example, a COMMON block named SEED will cause problems because the Intel Fortran run-time library contains a portability routine named SEED.

Apple has confirmed that this is caused by a defect in the linker supplied with Mac OS 10.6. To follow the issue and its eventual resolution, please refer to Apple “RADAR” issue 7890410 at http://developer.apple.com/ - a free membership in the Apple Mac Developer Program is required. As a workaround, rename the COMMON block so as not to duplicate a name in a static library.

3.5.2 Allocatable Arrays and OpenMP* PRIVATE or FIRSTPRIVATE
The compiler may fail to properly initialize allocatable arrays named in OpenMP PRIVATE or FIRSTPRIVATE clauses. This issue will be corrected in a future update. If you encounter problems with this combination of features, try adding the option `--switch omp3_private`. This is a temporary workaround and should not be used on a permanent basis. The Intel issue ID for this problem is DPD200160978.
3.6 Fortran 2003 and Fortran 2008 Feature Summary

The Intel Fortran Compiler supports many features that are new in Fortran 2003. Additional Fortran 2003 features will appear in future versions. Fortran 2003 features supported by the current compiler include:

- The Fortran character set has been extended to contain the 8-bit ASCII characters ~ \ [] " ^ { } | # @
- Names of length up to 63 characters
- Statements of up to 256 lines
- Square brackets [] are permitted to delimit array constructors instead of (/ /)
- Structure constructors with component names and default initialization
- Array constructors with type and character length specifications
- A named PARAMETER constant may be part of a complex constant
- Enumerators
- Allocatable components of derived types
- Allocatable scalar variables
- Deferred-length character entities
- PUBLIC types with PRIVATE components and PRIVATE types with PUBLIC components
- ERRMSG keyword for ALLOCATE and DEALLOCATE
- SOURCE= keyword for ALLOCATE
- Type extension
- CLASS declaration
- Polymorphic entities
- Inheritance association
- Deferred bindings and abstract types
- Type-bound procedures
- TYPE CONTAINS declaration
- ABSTRACT attribute
- DEFERRED attribute
- NON_OVERRIDABLE attribute
- GENERIC keyword for type-bound procedures
- FINAL subroutines
- ASYNCHRONOUS attribute and statement
- BIND(C) attribute and statement
- PROTECTED attribute and statement
- VALUE attribute and statement
- VOLATILE attribute and statement
- INTENT attribute for pointer objects
- Reallocation of allocatable variables on the left hand side of an assignment statement when the right hand side differs in shape or length (requires option -assume realloc_lhs if not deferred-length character)
- Bounds specification and bounds remapping on a pointer assignment
- ASSOCIATE construct
- SELECT TYPE construct
- In all I/O statements, the following numeric values can be of any kind: UNIT=, IOSTAT=
- NAMELIST I/O is permitted on an internal file
- Restrictions on entities in a NAMELIST group are relaxed
- Changes to how IEEE Infinity and NaN are represented in formatted input and output
- FLUSH statement
- WAIT statement
- ACCESS='STREAM' keyword for OPEN
- ASYNCHRONOUS keyword for OPEN and data transfer statements
- ID keyword for INQUIRE and data transfer statements
- POS keyword for data transfer statements
- PENDING keyword for INQUIRE
- The following OPEN numeric values can be of any kind: RECL=
- The following READ and WRITE numeric values can be of any kind: REC=, SIZE=
- The following INQUIRE numeric values can be of any kind: NEXTREC=, NUMBER=, RECL=, SIZE=
- Recursive I/O is allowed in the case where the new I/O being started is internal I/O that does not modify any internal file other than its own
- IEEE Infinities and NaNs are displayed by formatted output as specified by Fortran 2003
- BLANK, DECIMAL, DELIM, ENCODING, IOMSG, PAD, ROUND, SIGN, SIZE I/O keywords
- DC, DP, RD, RC, RN, RP, RU, RZ format edit descriptors
- In an I/O format, the comma after a P edit descriptor is optional when followed by a repeat specifier
- Rename of user-defined operators in USE
- INTRINSIC and NON_INTRINSIC keywords in USE
- IMPORT statement
- Allocatable dummy arguments
- Allocatable function results
- PROCEDURE declaration
- Procedure pointers
- ABSTRACT INTERFACE
- PASS and NOPASS attributes
- The COUNT_RATE argument to the SYSTEM_CLOCK intrinsic may be a REAL of any kind
- Execution of a STOP statement displays a warning if an IEEE floating point exception is signaling
- MAXLOC or MINLOC of a zero-sized array returns zero if the option -assume nomaxminloc is specified.
- Type inquiry intrinsic functions
- COMMAND_ARGUMENT_COUNT intrinsic
• EXTENDS_TYPE_OF and SAME_TYPE_AS intrinsic functions
• GET_COMMAND intrinsic
• GET_COMMAND_ARGUMENT intrinsic
• GET_ENVIRONMENT_VARIABLE intrinsic
• IS_IOSTAT_END intrinsic
• IS_IOSTAT_EOR intrinsic
• MAX/MIN/MAXVAL/MINVAL/MAXLOC/MINLOC intrinsics allow CHARACTER arguments
• MOVE_ALLOC intrinsic
• NEW_LINE intrinsic
• SELECTED_CHAR_KIND intrinsic
• The following intrinsics take an optional KIND= argument: ACHAR, COUNT, IACHAR, ICHAR, INDEX, LBOUND, LEN, LEN_TRIM, MAXLOC, MINLOC, SCAN, SHAPE, SIZE, UBOUND, VERIFY
• ISO_C_BINDING intrinsic module
• IEEE.EXCEPTIONS, IEEE_ARITHMETIC and IEEE_FEATURES intrinsic modules
• ISO_FORTRAN_ENV intrinsic module

The following is a partial list of Fortran 2003 features that are unimplemented or are known not to work in this release.

• User-defined derived type I/O
• Parameterized derived types
• Default initialization of CLASS objects
• The keyword MODULE may be omitted in MODULE PROCEDURE
• Transformational intrinsics, such as MERGE and SPREAD, in initialization expressions

The Intel® Fortran Compiler also supports some features from the Fortran 2008 standard. Additional features will be supported in future releases. Fortran 2008 features supported by the current version include:

• Maximum array rank has been raised to 31 dimensions (Fortran 2008 specifies 15)
• CONTIGUOUS attribute
• MOLD keyword in ALLOCATE
• DO CONCURRENT
• NEWUNIT keyword in OPEN
• G0 and G0.d format edit descriptor
• Unlimited format item repeat count specifier
• A CONTAINS section may be empty
• Intrinsic procedures BESSEL_J0, BESSEL_J1, BESSEL_JN, BESSEL_YN, BGE, BGT, BLE, BLT, DSHIFTL, DSHIFTR, ERF, ERFC, ERFC_SCALED, GAMMA, HYPOT, IALL, IANY, IPARITY, IS_CONTIGUOUS, LEADZ, LOG_GAMMA, MASKL, MASKR, MERGE_BITS, NORM2, PARITY, POPCNT, POPPAR, SHIFTA, SHIFTL, SHIFTR, STORAGE_SIZE, TRAILZ,
• Additions to intrinsic module ISO_FORTRAN_ENV: ATOMIC_INT_KIND, ATOMIC_LOGICAL_KIND, CHARACTER_KINDS, INTEGER_KINDS, INT8, INT16, INT32, INT64, LOCK_TYPE, LOGICAL_KINDS, REAL_KINDS, REAL32, REAL64, REAL128, STAT_LOCKED, STAT_LOCKED_OTHER_IMAGE, STAT_UNLOCKED

• An OPTIONAL dummy argument that does not have the ALLOCATABLE or POINTER attribute, and which corresponds to an actual argument that: has the ALLOCATABLE attribute and is not allocated, or has the POINTER attribute and is disassociated, or is a reference to the intrinsic function NULL, is considered not present

• A dummy argument that is a procedure pointer may be associated with an actual argument that is a valid target for the dummy pointer, or is a reference to the intrinsic function NULL. If the actual argument is not a pointer, the dummy argument shall have the INTENT(IN) attribute.

Coarrays are not supported on Mac OS X.

4 Intel® Debugger (IDB)

4.1 Compilation Requirements
Starting with Xcode 2.3, the Dwarf debugging information is stored in the object (.o) files. These object files are accessed by the debugger to obtain information related to the application being debugged and thus must be available for symbolic debugging.

In cases where a program is compiled and linked in one command, such as:

 ifort -g -o hello.exe hello.f90

the object files are generated by the compiler but deleted before the command completes. The binary file produced by this command will have no debugging information. To make such an application debuggable users have two options.

Users may build the application in two steps, explicitly producing a .o file:

 ifort -c -g -o hello.o hello.f90
 ifort -g -o hello.exe hello.o

Alternatively, users may use the compiler switch -save-temps to prevent the compiler from deleting the .o files it generates:

 ifort -g -save-temps -o hello.exe hello.f90

The debugger does not use the output of the “dsymutil” utility.
4.2 Known Problems

4.2.1 Compilation requirements for debugging on OS X 10.7 “Lion”
Mac OS X 10.7 “Lion” defaults to building executables with Position Independent Executable (PIE) code. However, the Intel Debugger (IDB) does not currently support debugging executables built with PIE. To disable PIE, add the following options at the end of the ifort command line:

```
-fpic -Wl,-no_pie
```

Note that the `-g` and `-save-temps` options are also required to build debuggable applications on all Mac OS X versions.

4.2.2 Dwarf vs. Stabs Debug Formats
The debugger only supports debugging of executables whose debug information is in Dwarf2 format, and does not support the Stabs debug format. Use the `-gdwarf-2` flag on the compile command to have gcc and g++ generate Dwarf output. The Intel compilers (icc and ifort) produce Dwarf2 debug format with the `-g` flag.

4.2.3 Debug Info from Shared Libraries
The debugger does not read debug information from shared libraries. Therefore you cannot set a breakpoint to symbols like `_exit` which are part of a system library.

4.2.4 Non-local Binary and Source File Access
The debugger cannot access binary files from a network-mounted file system (such as NFS). The error message will look like this:

```
Internal error: cannot create absolute path for: /home/me/hello
```

You cannot debug "/home/me/hello" because its type is "unknown".

The debugger cannot access source files from a network-mounted file system (such as NFS). The error message will look like this:

```
Source file not found or not readable, tried...
./hello.f90
/auto/mount/site/foo/usr1/user_me/f_code/hello.f90
```

(Cannot find source file hello.f90)

The file-path specified will be correct.

The workaround in both cases is to copy the files to a local file system (i.e., one which is not mounted over the network).
4.2.5 Local variables may not be visible
The linker on Mac OS X 10.5.4 (and subsequent versions) does not always issue definitions of local variables into the debug information in the executable. We do not have a characterization of when this occurs. The end result is that the variable is not visible or is visible but incorrectly evaluated.

The instances we have seen have involved local arrays in Fortran programs which were allocated in the .bss segment by the compiler. A work-around is to change the source to make the variable be global rather than local. In Fortran this is most easily done by putting the variable into a module or common block. Intel and Apple are working together to resolve this issue.

4.2.6 Printing Fortran REAL*16 variables
The debugger does not print the correct value for Fortran REAL*16 variables.

4.2.7 Debugging applications that fork
Debugging the child process of an application that calls fork is not yet supported.

4.2.8 Debugging applications that exec
The $catchexecs control variable is not supported.

4.2.9 Fortran alternate entry points
Formal parameters of alternate entry points are not visible from within the debugger if they are not also formal parameters of the main entry point.

4.2.10 Snapshots
Snapshots are not yet supported as described in the manual.

4.2.11 Debugging optimized code
Debugging optimized code is not yet fully supported. The debugger may not be able to see some function names, parameters, variables, or the contents of the parameters and variables when code is compiled with optimizations turned on.

4.2.12 Watchpoints
Watchpoints that are created to detect write access don’t trigger when a value identical to the original has been written. These restrictions are due to a limitation in the Mac OS* X operating system.

Because the SIGBUS signal rather than the SIGSEGV signal is used by the debugger to implement watchpoints, you cannot create a signal detector which will catch a SIGBUS signal.

4.2.13 Fortran modules and commons
A globally defined Fortran module should be rescoped with a double percent (%%) when referred to. For example, to set a breakpoint in the subroutine bar contained in a globally defined module foo, do

(idb) stop in foo%%bar
Please refer to the following section in the manual for the rescoping syntax:

Looking Around the Code, the Data and Other Process Information >

Looking at the Data >

The print Command

If you try to access (print, etc.) a Fortran module or common using the name in the source code, the debugger may not be able to find it. As a workaround, the you can try prepending '_' to the name. For example, in the source code, if you have a common called "com":

(idb) print _com

4.2.14 Graphical User Interface (GUI)
This version of the debugger does not support the GUI

4.2.15 MPP Debugging Restrictions
MPP debugging is not supported as described in the manual.

4.2.16 Function Breakpoints
Debugger breakpoints set in functions (using the "stop in" command) may not halt user program execution at the first statement. This is due to insufficient information regarding the function prologue in the generated Dwarf debug information. As a work-around, use the "stop at" command to set a breakpoint on the desired statement.

The compiler generates a call to "__dyld_func_lookup" as part of the prologue for some functions. If you set a breakpoint on this function the debugger will stop there, but local variable values may not be valid. The work-around is to set a breakpoint on the first statement inside the function.

4.2.17 Core File Debugging
Debugging core files is not yet supported.

4.2.18 Universal Binary Support
Debugging of universal binaries is supported. The debugger supports debugging the IA-32 Dwarf sections of binaries on IA-32 and either the IA-32 or the Intel® 64 sections on Intel® 64.

4.2.19 Debugger variable $threadlevel
The manual's discussion of the debugger variable "$threadlevel" says "On Mac OS* X, the debugger supports POSIX threads, also known as pthreads." This sentence might be read as implying that other kinds of threads might be supported. This is not true; only POSIX threads are supported on Mac OS* X.

4.2.20 Open File Descriptors Limitation
Because the debugger opens the .o files of a debuggee to read debug information, you should raise the open file limit.

Mac OS* limits the number of open file descriptors to 256. You can increase this limit as follows:
ulimit -n 2000

Please use this command to increase the number of open descriptors before starting the debugger.

This is a workaround until the debugger can better share a limited number of open file descriptors over many files.

4.2.21 $cdir, $cwd Directories
$cdir is the compilation directory (if recorded). This is supported in that the directory is set; but $cdir is not itself supported as a symbol.

$cwd is the current working directory. Neither the semantics nor the symbol are supported.

The difference between $cwd and '.' is that $cwd tracks the current working directory as it changes during a debug session. '.' is immediately expanded to the current directory at the time an entry to the source path is added.

4.2.22 info stack Usage
The gdb mode debugger command info stack does not currently support negative frame counts in the way gdb does, for the following command:

 info stack [num]

A positive value of num prints the innermost num frames, a zero value prints all frames, and a negative value prints the innermost –num frames in reverse order.

4.2.23 $stepg0 Default Value Changed
The debugger variable $stepg0 changed default to a value of 0. With the value "0" the debugger will step over code without debug information if you do a "step" command. Set the debugger variable to 1 to be compatible with previous debugger versions as follows:

 (idb) set $stepg0 = 1

5 Intel® Math Kernel Library
This section summarizes changes, new features and late-breaking news about this version of Intel® Math Kernel Library (Intel® MKL). For information on bug fixes, see http://intel.ly/neQIw2

5.1 What’s New in Intel® MKL 10.3 Update 9
- LAPACK: Improved [C/Z]GEEV performance for very small sizes (~10 x 10)
- FFTs: Threaded the real in-place 1D FFTs for a significant increase in performance
- FFTs: Introduced new algorithms for improved scalability of power-of-2 double-precision complex 1D FFTs on Intel® Xeon® Processor E5 series systems running 32-bit operating systems
• Random number Generators: added support for a non-deterministic random number generator based on the RdRand instruction and supporting hardware available in future processors based on the Intel® code name “Ivy Bridge” microarchitecture
• Vector Math Functions: improved performance of the Erf() and Pow3o2() functions on Intel® Core™ processors
• Data Fitting: improved performance of routines for spline-based evaluation, differentiation, and integration on Intel® Xeon® 5600 and 7500 series and Intel® Core™ i7-2600 series processors

5.2 What’s New in Intel® MKL 10.3 Update 8
• Data Fitting component: Added a set of new data fitting functions covering one-dimensional algorithms for vector spline construction, cell or bin search, and evaluation, differentiation, and integration of the spline interpolants. Includes support for:
 o Linear, quadratic, cubic, step-wise const, and user-defined splines
 o Cell search with configuration parameters for optimal performance
 o User-defined interpolation and extrapolation
 o Vector-valued functions
 o Column- and row-major storage formats
• Sparse BLAS: Improved compressed sparse row matrix-vector multiply (?CSRMV) performance for very sparse matrices on high core counts supporting Intel Advanced Vector Extensions (AVX)
• FFTs: Improved the performance of the 1D double precision FFTs on systems supporting Intel AVX
• Statistics functions: Improved the performance and scalability for computing the Variance-Covariance and Correlation matrices (FAST method) on Intel® Core processors
• Added optimizations for processors supporting the Intel® Advanced Vector Extensions (AVX)
• Bug fixes

5.3 What’s New in Intel® MKL 10.3 Update 7
• BLAS: Improved DSYRK/SSYRK threaded performance for small output matrices and large outer products (i.e., rectangular input matrices), on all recent Intel® Xeon® processors
• BLAS: Improved ?GEMM performance for small problems (<10) where beta =1 on all recent Intel Xeon processors
• BLAS: Improved DSCAL performance for small problems and for cases where INCX=1 on 32-bit programs running on Intel Xeon processors 5500, 5600, and 7500 series
• BLAS-like extensions: Improved threading and cache utilization of in-place transposition of square matrices
• PARDISO: Introduced an independent threading control for PARDISO; use MKL_DOMAIN_PARDISO with the mkl_domain_set_num_threads() function
• Poisson Library: Added support for 2D and 3D periodic boundary conditions
 Included the Link Line Advisor in the documentation directory
 Added a command line link tool for use with scripting tools such as libtool
• Changed the names of constants used to specify the domain in the mkl_domain_set_num_threads() function (e.g., MKL_BLAS has become MKL_DOMAIN_BLAS); the old names still exist with the exception of MKL_PARDISO
• Bug fixes

5.4 What’s New in Intel® MKL 10.3 Update 6
• Sparse BLAS: Added a new option to the mkl_?csrbsr converter function allowing detection and removal of zero elements when converting from the BSR format to the CSR format
• Bug fixes

5.5 What’s New in Intel® MKL 10.3 Update 5
• BLAS: Improved performance: {S,C,Z}TRSM for processors with Intel® Advanced Vector Extensions (Intel® AVX); {S,D}GEM2VU for processors with Intel AVX as well as the Intel® Core™ i7 processor and the Intel® Xeon® processor 5500 series
• BLAS: Improved scaling: ?TRMV for large matrices on all architectures; DGEMM for odd numbers of threads on Intel® Xeon® processor 5400 series
• LAPACK: Included LAPACK 3.3.1 extensions and the respective LAPACKE interfaces
• LAPACK: Improved the performance of ?SYGST and ?HEGST used in generalized eigenvalue problems
• LAPACK: Improved the performance of the inverse of an LU factored matrix (?GETRI)
• PARDISO: Added transpose and conjugate transpose solve capability (ATx=b and AHx=b); facilitates compressed sparse column (CSC) format support
• PARDISO: Improve out-of-core PARDISO performance when the memory requirements slightly exceed available memory using MKL_PARDISO_OOC_MAX_SWAP_SIZE environment variable and in-core PARDISO
• Optimization Solvers: Added Inf and NaN checks in the RCI Trust-Region solvers
• FFTs: Improved the performance of 3D FFTs on small cubes from 2x2x2 to 10x10x10 for all supported precisions and types on all Intel® processors supporting Intel® SSE3 and later
• FFT examples: Re-designed example programs to cover common use cases for Intel MKL DFTI and FFTW
• VSL: Improved the performance of the single precision MT19937 and MT2203 basic random number generators on the Intel® Core™ i7-2600 processor on 64-bit operating systems
• VSL: Improved the performance of the integer version of the SOBOL quasi-random number generator on the Intel® Core™ i7-2600 processor and Intel® Xeon® processor 5400 series
• Bug fixes

5.6 What’s New in Intel® MKL 10.3 Update 4
• BLAS: Improved DTRMM performance on Intel® Xeon® processors 5400 and later
• BLAS: Improved DTRSM performance on all 64-bit enabled processors, especially processors with Intel® Advanced Vector Extensions (Intel® AVX)
• LAPACK: Incorporated bug fixes from the LAPACK 3.3.1 release
• OOC PARDISO: Improved the estimate of the amount of memory needed in out-of-core operation
• FFT: Improved 1D real FFT scaling through improved threading
• FFT: Updated C and Fortran FFT examples to use the new single dynamic library linking model
• VML: Improved performance of the single precision Enhanced Performance version of the real Hypot and complex Abs functions and of the complex Arg, Div, Mul, MulByConj functions for all accuracy modes on Intel® Xeon® processors 5600 and 7500 series, and the Intel® Core™ i7-2600 processor
• Service functions: Improvements and additions to the Intel MKL service functions the online release notes at http://intel.ly/pkUQXI for more information)
• Bug fixes

5.7 What’s New in Intel® MKL 10.3 Update 3
• BLAS: Improved multi-threaded performance of DSYRK, DTRSM, and DGEMM on Intel® Xeon® processor 5400 series running 32-bit Windows®
• LAPACK: Implemented LAPACK 3.3 from netlib including Cosine-Sine decomposition, improved linear equations solvers for symmetric and Hermitian matrices and auxiliary functions
• PARDISO: 0-based permutation vectors are now allowed at input
• PARDISO: Documentation for the pardisoinit() routine
• PARDISO: Improved performance of serial PARDISO with multiple right-hand sides (RHS)
• PARDISO: Independent control for parallelism in the solve step for improved performance on small matrices—see description of iparm(25)
• PARDISO: Reduced backward substitution—allows partial solution computation for a full RHS—see description of iparm(31)
• FFT: Implemented Real FFT transforms for up to 3 to 7 dimensions
• FFT: Parallelized multi-dimensional complex transforms using split-complex data represented as two real arrays
• Cluster FFTs: Extended FORTRAN 90 interface to real-to-complex transforms and included new examples
• VML: Added new complex Pack/Unpack functions and real Gamma/LGamma functions
• VML: Improved performance on Intel® Xeon® processor 5600 series and processors supporting Intel® Advanced Vector Extensions (Intel® AVX) for the following: all functions when operating on short vectors (<100), all functions when operating on unaligned input vectors, the sPow2o3 function, and the enhanced performance (EP) version of complex Add and Sub.
• VSL: Functions for saving/restoring random number generator (RNG) streams to/from memory
• VSL: Added new UniformBits32 and UniformBits64 functions
• VSL: Extended the number of unique streams supported by MT2203 BRNG from 1024 to 6024
• Bug fixes

Note: The GMP Arithmetic Functions in Intel MKL will be removed in a future version of Intel MKL.

5.8 What's New in Intel® MKL 10.3 Update 2
• BLAS: Improved performance of transposition functions on the Intel® Xeon® processor 5600 series
• BLAS: Added examples for transposition routines
• FFT: Added Fortran examples showing how to reduce application footprint by linking only functions with the desired precision
• FFT: Added check for stride consistency on in-place real transforms with CCE storage
• FFT: Expanded threading to new cases for multi-dimensional transforms
• VSL: Improved performance of Multivariate Gaussian random number generator for single- and double-precision on 4-core Intel® Xeon® processors 5500 series
• VML: Improved performance of in-place operation of Add, Mul, and Sub functions on the Intel® Xeon® processor 5500 series
• Bug fixes

5.9 What's New in Intel® MKL 10.3 Update 1
• PARDISO/DSS: Added true F90 overloaded API (see the Intel® MKL reference manual for more information)
• PARDISO: Improved the statistical reporting to be more reader friendly
• Sparse BLAS: Improved performance of ?BSRMM functions on the latest Intel® processors
• FFTs: Support for negative strides
• FFT examples: Added examples for split-complex FFTs in C and Fortran using both the DFTI and FFTW3 interfaces
• VML: Improved performance of real in-place Add/Sub/Mul/Sqr functions on systems supporting SSE2 and SSE3
• Poisson Library: Changed the default behavior of the Poisson library functions from sequential to threaded operation
• Bug fixes

5.10 What's New in Intel® MKL 10.3

• BLAS
 o New functions for computing 2 matrix-vector products at once: [D/S]GEM2VU, [Z/C]GEM2VC
 o New functions for computing mixed precision general matrix-vector products: [DZ/SC]GEMV
 o New function for computing the sum of two scaled vectors: *AXPBY
 o Intel® AVX optimizations in key functions: SMP LINPACK, level 3 BLAS, DDOT, DAXPY
• LAPACK
 o New C interfaces for LAPACK supporting row-major ordering
 o Integrated Netlib LAPACK 3.2.2 including one new computational routine (*GEQRFP) and two new auxiliary routines (*GEQR2P and *LARFGP) and the earlier LAPACK 3.2.1 update
 o Intel® AVX optimizations in key functions: DGETRF, DPOTRF, DGEQRF

• PARDISO
 o Improved performance of factor and solve steps in multi-core environments
 o Introduced the ability to solve for sparse right-hand sides and perform partial solves—produces partial solution vector
 o Improved performance of the out-of-core (OOC) factorization step
 o Support for zero-based (C-style) array indexing
 o Zeros on the diagonal of the matrix are no longer required in sparse data structures for symmetric matrices
 o New ILP64 PARDISO interface allows the use of both LP64 and ILP64 versions when linked to the LP64 libraries
 o The memory required for storing files on the disk in OOC mode can now be estimated just after reordering

• Sparse BLAS
 o Format conversion functions now support all data types (single and double precision for real and complex data) and can return sorted or unsorted arrays

• FFTs
 o Intel AVX optimizations in all 1D/2D/3D FFTs
 o Improved performance of 2D and 3D mixed-radix FFTs for single and double precision data for all systems supporting the SSE4.2 instruction set
 o Support for split-complex data represented as two real arrays introduced for 2D/3D FFTs
 o Support for 1D complex-to-complex transforms of large prime lengths

• VML
 o A new function for computing \((ax+b)/(cy+d)\) where \(a, b, c,\) and \(d\) are scalars, and \(x\) and \(y\) are real vectors: \(v[s/d]LinearFrac()\)
 o Intel AVX optimizations for real functions
 o A new mode for setting denormals to zero, overflow support for complex vectors, and for every VML function a new function with an additional parameter for setting the accuracy mode

• VSL
 o A set of new Summary Statistics functions was added covering basic statistics, covariance and correlation, pooled, group, partial, and robust covariance/correlation, quantiles and streaming quantiles, outliers detection algorithm, and missing values support
 • Performance optimized algorithms: MI algorithm for support of missing values, TBS algorithm for computation of robust covariance, BACON algorithm for detection of outliers, ZW algorithm for computation of quantiles (streaming data case), and 1PASS algorithm for computation of pooled covariance
 o Improved performance of SFMT19937 Basic Random Number Generator (BRNG)
 o Intel® AVX optimizations: MT19937 and MT2203 BRNGs
- Added runtime dispatching dynamic libraries allowing link to a single interface library which loads dependent libraries dynamically at runtime depending on runtime CPU detection and/or library function calls
- The custom dynamic libraries builder now uses the runtime dispatching dynamic libraries on the Linux* and Mac OS* X operating systems
- A new directory structure has been established to simplify integration of Intel MKL with the Intel® Parallel Studio XE family of products and directories formerly designated as "em64t" are now designated by the "intel64" tag
- The sparse solver functionality has been fully integrated into the core Intel MKL libraries and the libraries with "solver" in the filename have been removed from the product

5.11 Known Issues
A full list of the known limitations of this release can be found in the Knowledge Base for the Intel® MKL at http://intel.ly/ptEfAP

5.12 Notices
The following change is planned for future versions of Intel MKL. Please contact Technical Support if you have concerns:

- Content in the libraries containing solver in the filenames will be moved to the core library in a future version of Intel MKL. These solver libraries will then be removed.
- The Intel MKL GNU Multiple Precision* (GMP) function interfaces will be removed in a future library release.
- The timing function mkl_set_cpu_frequency() is deprecated. Please use mkl_get_max_cpu_frequency(), mkl_get_clocks_frequency(), and mkl_get_cpu_frequency() as described in the Intel® MKL Reference Manual.
- The MKL_PARDISO constant defined to specify the PARDISO domain should no longer be used with the mkl_domain_set_num_threads() function; please use MKL_DOMAIN_PARDISO instead.
- Convolution and Correlation routines will not be backward compatible with 10.2 update 3 in a future release.

5.13 Attributions
As referenced in the End User License Agreement, attribution requires, at a minimum, prominently displaying the full Intel product name (e.g. "Intel® Math Kernel Library") and providing a link/URL to the Intel® MKL homepage (www.intel.com/software/products/mkl) in both the product documentation and website.

The original versions of the BLAS from which that part of Intel® MKL was derived can be obtained from http://www.netlib.org/blas/index.html.

The original versions of LAPACK from which that part of Intel® MKL was derived can be obtained from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. Our FORTRAN 90/95 interfaces to LAPACK are similar to those in the LAPACK95 package at http://www.netlib.org/lapack95/index.html. All interfaces are provided for pure procedures.
The original versions of ScaLAPACK from which that part of Intel® MKL was derived can be obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.

PARDISO in Intel® MKL is compliant with the 3.2 release of PARDISO that is freely distributed by the University of Basel. It can be obtained at http://www.pardiso-project.org.

Some FFT functions in this release of Intel® MKL have been generated by the SPIRAL software generation system (http://www.spiral.net/) under license from Carnegie Mellon University. The Authors of SPIRAL are Markus Puschel, Jose Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo.

6 Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to:

Intel® Fortran Composer XE 2011 for Mac OS* X
Installation Guide and Release Notes
http://www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. Go to:

Celeron, Centrino, Intel, Intel logo, Intel386, Intel486, Intel Atom, Intel Core, Itanium, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2012 Intel Corporation. All Rights Reserved.