RenderScript Basic Tutorial for Android* OS
Android RenderScript Tutorial

Camera Video Stream Processing with RenderScript (Android* OS Tutorial)

User's Guide
Compute Code Builder - Samples

Contents
2Contents

3Legal Information

4Introduction

4Enabling Camera Support in the Application

5Basics of “Camera Preview” Feature

7What is RenderScript?

7Multi-Stage Post-processing with RenderScript

8Implementing the “Old Movie” Effect

8Running and Controlling the Tutorial

9References

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. Go to: http://www.intel.com/products/processor_number/.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Intel, Intel logo, Intel Core, VTune, Xeon are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission from Khronos.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

Copyright © 2014 Intel Corporation. All rights reserved.

	Optimization Notice

	 Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Introduction
The Camera Video Stream Processing tutorial demonstrates basic approach to processing video stream from a camera with help of the Google RenderScript*.
Specifically, the tutorial uses "preview" feature of the Android camera interface, which relies on the RenderScript to convert YUV data from the camera to RGB. The code sample also uses RenderScript to accelerate the data post-processing: a popular “Old Movie” video effect is implemented as a RenderScript kernel. Finally, the sample uses the copy-free way of displaying the resulting image on the screen.
The tutorial runs on devices with Android* OS 4.3 and higher.

Enabling Camera Support in the Application
Android offers rich API supporting enumerating the available cameras (for example, front/rear), gathering camera capabilities (like resolution), and finally enabling to capture pictures and videos in the applications.

The steps for implementing general camera “pipeline” are as follows:

1. Enumerate cameras and capabilities (for example, available resolutions)
//here we use default back-facing camera (best for the video effect)

Camera camera = Camera.open(0);

params = camera.getParameters();

// the old movie effect does not require high resolution source

// 640x480 resolution is enough so choose preview resolution that is close

List<Camera.Size> sizes = params.getSupportedPreviewSizes();

for(int i = 0; i < sizes.size(); ++i)

{

Camera.Size size = sizes.get(i);

 //any logic to select the preview size

…
//notice that when setting preview size you must
//use entries from getSupportedPreviewSizes(), not arbitrary values
params.setPreviewSize(size.width,size.height);
}

// preview in NV21 format (which is supported by all cameras, unlike RGB)

params.setPreviewFormat(ImageFormat.NV21);

camera.setParameters(params);
2. Setup camera preview callbacks, which enables live image previews from the camera (see Basics of “Camera Preview” Feature for details)
//in the OnCreate method:

…

//Assign a view that displays the preview to the user
SurfaceView surView = (SurfaceView) findViewById(R.id.inputSurfaceView);

//the surface callback is needed for assigning the camera preview input

SurfaceHolder surHolder = surView.getHolder();

//our Activity implements SurfaceHolder.Callback, so we use ‘this’
//to handle preview surface changes
surHolder.addCallback(this);

…

//in the surfaceCreated callback

camera.setPreviewCallback(this);
3. <Optional step> Implement any kind of post-processing to the preview frame .See section Implementing the “Old Movie” Effect for details.
4. <Optional step> Use MediaRecorder class to capture the resulting video (not a subject for this tutorial)
5. Implement proper resources releasing, for example freeing Camera object upon application exit, for use by other applications.

camera.stopPreview();

camera.setPreviewCallback(null);

camera.release();

camera = null;

Find more details on the general camera setup steps in the dedicated Android tutorial. You can also navigate directly to the source code of this tutorial and look through comments.

Basics of “Camera Preview” Feature
Camera preview is an important feature for users. The feature provides a capability of taking pictures or video more effectively by enabling to preview what the device camera sees. It is also possible to apply any kind of post-processing to the preview frame before displaying the preview on the screen.
The following example code demonstrates the basic camera preview class. It implements methods of SurfaceHolder.Callback to capture the callback events for creating and destroying the surface.
Note: Connect the surface to some valid SurfaceView, otherwise the camera does not produce preview frames.
Finally, the Activity-derived class also implements the Camera.PreviewCallback to get actual raw previews in plain byte arrays. Another option is to operate on SurfaceTexture instead. Refer to the setPreviewTexture, but remember that operating on SurfaceTexture is much easier with OpenGL, not RenderScript.
public class MainActivity extends Activity
implements Camera.PreviewCallback, SurfaceHolder.Callback
{
 // Single ImageView that is used to output the resulting bitmap

 private ImageView outputImageView;

 …

 protected void onCreate(Bundle savedInstanceState)

 {

 super.onCreate(savedInstanceState);

 …

 setContentView(R.layout.activity_main);

 //ImageView, which is used to display the resulting image

 outputImageView = (ImageView)findViewById(R.id.outputImageView);

 …

 //get preview surface for camera preview and set callback for surface

 //actually the layout is specified the way
 // the inputSurfaceView is completely overlaid by the outputSurfaceView

 //
so inputSurfaceView is rather fake view for unprocessed preview frames

 //
(which do not want to display, yet it is required to setup the callback)
 SurfaceView surView = (SurfaceView) findViewById(R.id.inputSurfaceView);

 SurfaceHolder surHolder = surView.getHolder();

 surHolder.addCallback(this);

 }

 public void onPreviewFrame(byte[] arg0, Camera arg1)

 {

 // actual data from the Camera arrives here

 // since the processing is async, camera continues to produce frames

 // so we skip subsequent previews until processing of the current is done

 if (RenderScriptIsWorking…)

 return;

 RenderScriptIsWorking = true;
 …

//copying bytes from the buffer

//(to let camera proceeding with next frames upon return from onPreviewFrame)
allocationYUV.copyFrom(arg0);

//issue an async task to process the frame in (other than UI) thread
//it will also cause ImageView update, and reset the RenderScriptIsWorking flag

 new ProcessData().execute();

…

 }

 public void surfaceChanged(SurfaceHolder holder,int format,int width,int height){

//do nothing as we actually do not use the surface

//still need the stub to complete the camera callbacks

 }

 public void surfaceCreated(SurfaceHolder holder) {

//re-init the camera upon any surface change

 try {

 camera = Camera.open(0);

 camera.setParameters(params);

 camera.setPreviewCallback(this);

 camera.setPreviewDisplay(holder);

 camera.startPreview();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void surfaceDestroyed(SurfaceHolder holder) {

//release the camera upon surface destroy
 camera.stopPreview();

 camera.setPreviewCallback(null);

 camera.release();

 camera = null;

 }

…

}

Let’s inspect the code that sets the camera callbacks in details:

 camera.setPreviewCallback(this);

 camera.setPreviewDisplay(holder);

 camera.startPreview();
This is minimal APIs calls to start displaying the unprocessed preview frames. Camera implicitly communicates with SurfaceView using the surfaces. All you need is to retrieve a SurfaceHolder object (‘holder’ above) and provide this object to the camera via setPreviewDisplay(). Then camera also needs an object that implements callbacks on the surface changes, to be set with setPreviewCallback(), in the case of this tutorial, the Activity provides the necessary callbacks, so the code uses ‘this’. Upon that you can start getting preview frames with startPreview().
The only trick is when you want to display modified images only. The easiest way (employed in this tutorial) is to add another View that renders the processed images, while completely hiding the first View. You need the first view just to get unmodified preview images in surfaces (hence it is of SurfaceView type, below). These roles are exactly the purposes of the inputImageView and outputImageView. Notice that per layout, the second view completely overlaid the first one:
 <SurfaceView

 android:id="@+id/inputSurfaceView"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" />

 <ImageView

 android:id="@+id/outputImageView"

 android:background="#FF000000"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" />
Unless your application is already OpenGL-enabled, you can use this API to process the input preview frames, otherwise the RenderScript is the best match to implement the kernels. The easiest way to get zero-copy displaying of the image processing results, is to rely on bitmap-to-allocation sharing. In turn, bitmaps are best displayed with ImageView, hence the type of outputImageView above. More details on this in the Multi-Stage Post-processing with RenderScript section below.
What is RenderScript?

RenderScript is a framework designed by Google* for performing data-parallel computation in Android-based devices. RenderScript kernels and intrinsics may be accelerated by an integrated GPU. Thanks to tight integration of the RenderScript with the Android OS through Java APIs, you can perform data-parallel computations from Java applications in the efficient way. The RenderScript runtime also takes care of the efficient scheduling and parallelizing of work on the right processor available on a device. Refer to the previous tutorial in the series for the general introduction on the RenderScript. Finally RenderScript offers a set of built-in kernels (intrinsics) for populr tasks like converting YUV to RGB, blur, etc.
In this tutorial RenderScript is used to implement the popular “Old Movie” video effect.
Multi-Stage Post-processing with RenderScript

First step in the application logic is converting the camera input (preview) frames from YUV to RGB using ScriptIntrinsicYuvToRGB intrinsic (built-in) class. Then the image is blurred with another intrinsic function, ScriptIntrinsicBlur. After that, the simple setup function is called per frame (to advance time step, and so on) and finally the post-processing kernel itself.
To make the process asynchronous (per general Android guidelines to avoid expensive operations in the main UI thread), the tutorial implements a simple class that extends basic AsyncTask functions with what is needed:
private class ProcessData extends AsyncTask<byte[], Void, Boolean>

{

protected Boolean doInBackground(byte[]... args)

{

…
// Run the scripts

// 1) conversion to RGB

intrinsicYuvToRGB.setInput(allocationYUV);

intrinsicYuvToRGB.forEach(allocationIn);

// 2) apply Blur

intrinsicBlur.setInput(allocationIn);

intrinsicBlur.forEach(allocationBlur);

// 3)update filter state

script.invoke_update_state();

// 4)set filter args and run the OldMovie filter

script.forEach_filter(allocationBlur, allocationOut);

//5) wait for completion

rs.finish();

//6)propagate the results back to the bitmap

allocationOut.syncAll(Allocation.USAGE_SHARED);
…

}

Notice that the very first input allocation (allocationYUV) gets the bytes directly from the camera preview frames. Copying is required to keep the process asynchronous, which, for example, enables camera to proceed without blocking until the processing is done:
//copying bytes from the buffer (to let camera to proceed with next frames) allocationYUV.copyFrom(arg0);

In contrast, the final (output) allocation, which is the allocationOut is connected to the bitmap upon creation to enable zero-copy updates, refer to the OnCreate method of the sample Activity:

// Create an allocation (which is memory abstraction in the Renderscript)

// that corresponds to the outputBitmap

allocationOut = Allocation.createFromBitmap(rs,outputBitmap);

Finally, the bitmap is displayed using the regular ImageView. Refer to the following method of the ProcessData class:
 protected void onPostExecute(Boolean result) {

 …

outputImageView.setImageBitmap(outputBitmap);

 outputImageView.invalidate();

 RenderScriptIsWorking = false;

 }

Implementing the “Old Movie” Effect

“Old movie”, also known as “film look” is the popular video effect that applies film-style lighting, noise, camera motion (jittering), converting to black-and-white, specific framing, simulated grading over time, and other effects that are associated with aged films.

This tutorial comprises the basic implementation of “Old Movie” effect, including:
· Stains

· (Vertical) Scratches

· Hairs and irregular scratches

· Camera jittering

· Intensity and color variations

· Semi-transparent vignette

To simplify the code, the tutorial keeps only one random and vertical scratch, one stain, and so on at a time. Still, all the effects rely on random number generation to evolve over time in the visually convincing way.
See the code in the process.rs for details on the particular implementation.

Running and Controlling the Tutorial

If you compile the tutorial using the Eclipse* IDE, you should be able to run the tutorial on the device directly from the IDE. Refer to Android documentation for details on building and running from Eclipse with ADT. Alternatively, you can use the ADB utility from the Android SDK platform-tools to install the pre-built executable yourself from bin/CameraRenderScript.apk.

Finally, if you have neither IDE nor even Android SDK, nor ADB, you can copy the pre-built APK to the device over regular USB and install it directly on the device using any file manager for Android OS.

After successful installation, the tutorial application becomes available on the device with the following icon:

[image: image1.png]Camera
RenderScript

Upon launching, the tutorial starts in the full-screen mode and displays a preview from the default device camera (back-facing) with a video effect applied to each frame. On the left-top corner you can find the current overall application FPS and also a separate FPS value (in brackets) for performance of the RenderScript portion of the app.
[image: image2.png]640x480: 10,0 FPS (RenderScript: 23,1 FPS)

Video Effect ON

The VideoEffect On/Off slider enables you to turn the video effect off, so that the application displays the unmodified camera output.
References

· Intel® SDK for OpenCL™ Applications – User’s Guide
· Intel SDK for OpenCL Applications – Optimization Guide
· Android* Development Tools at http://developer.android.com/tools/sdk/eclipse-adt.html
· Android NDK at http://developer.android.com/tools/sdk/ndk/index.html
· RenderScript at http://developer.android.com/guide/topics/renderscript/compute.html
6
9

