Designing an optimal deep learning solution at Dell EMC

Nishanth Dandapanthula
HPC Solutions Engineering, DellEMC

Nov 2017
Agenda

HPC Innovation Lab Update
Deep Learning at Dell
Dell EMC HPC Innovation Lab charter

Design, develop and integrate HPC systems
- Flexible reference architectures
- Systems tuned for research computing, manufacturing, life sciences, oil and gas, etc.

New Investment:
- More SMEs, huge innovation ecosystem

Act as the focal point for joint R&D activities
- Technology collaboration with partners for joint innovation
- Research coordination with DSC, COEs and customers

HPC Innovation Lab

Prototype and evaluate advanced technologies
- HPC+Cloud, HPC+Big Data
- Processors, Accelerators, File systems, software, etc.

Conduct application performance studies and develop best practices
- White papers, blogs, presentations
- www.hpcatdell.com

Technical briefings, tours, remote access
HPC Innovation Lab

13K sqft facility with 1300+ servers and ~10PB storage dedicated to HPC research, development and innovation in collaboration with Dell HPC community

Zenith

- Top500 system based on Intel Scalable Systems Framework (OPA, KNL, Xeon, OpenHPC)
- 544-nodes total system size
- 384-nodes with dual 6148 processors, 160-nodes C6320p with Intel Xeon Phi (KNL) processors and non-blocking OPA fabric
- 538 TFlops sustained performance (#373 on Top 500)

Rattler

- Research/development system in collaboration with Bright Computing, Mellanox, nVidia
- 84 nodes with IB EDR and 6148 processors
- 13 nodes with Accelerators (P100, PSXM2, P40, P4, V100, V SXM2)
Deep Learning @ Dell
DL Landscape and Current Challenges and Responsibilities

• Too many parameters to tune, easy to get wrong answers:
 – Frameworks: Caffe2, TensorFlow, MXNet etc.
 – Networks: AlexNet, GoogleNet, Inception, ResNet
 – Parameters: batch size, epoch, learning rate, prefetch rate, shuffle, Compressed vs un etc.
 – Two phases: Training & Inference
 – Software ecosystem: Application updates and OS support

• Meaning of Deep Learning, Machine Learning and AI
 – Justifying results

• Learning Curve
 – Hardware and software ecosystems and Expertise
 › Xeon, Xeon Phi, GPU, KNM
 – Challenges vary as hardware and software vary
 – Porting existing models is hard

• Scalability questions and distributed Training
 – Intel Labs 9600 Xeon Phis
 – 768 node Xeon Phi scalability by Intel Labs and SurfSara
1. SKL improves performance of different models by ~50% and more compared to BDW for several NNs
2. Processor used is 6142(16c 2.6) and 2697 v4(18c, 2.3)
Intel Caffe Deep Learning Performance on SKL – Aug 17

- KNL and top bin SKL perform similarly for deep learning Frameworks
- 6148 good medium for performance as well as performance/W
• Performance has been improving with subsequent versions of Intel Caffe
Intel Caffe SKL scalability:

• Results shown are best performance numbers after hyper parameter sweep for each node count.
 • Thread count, batch size, prefetch size, learning-rate etc
• Intel Caffe 1.0.4, Imagenet compressed lmdb dataset, /dev/shm, Resnet_50_8k_batch model, MKL DNN, MLSL, SKL 6148, OPA, 192 GB memory
Intel Optimized Caffe KNL Scalability

- Results shown are best performance numbers after hyper parameter sweep for each node count.
 - Thread count, batch size, prefetch size, learning-rate etc
- Intel Caffe 1.0.4, Imagenet compressed lmdb dataset, /dev/shm, Resnet_50_64_nodes_8k_batch model, MKL DNN, MLSL,KNL-F 7230, OPA, 192 GB memory, 60 threads, Cache mode
Storage Subsystems: NFS Scaling

![Diagram showing CAFFE scalability - KNL (resnet_50) with images/sec on the y-axis and No. of nodes on the x-axis. The diagram illustrates the performance improvement with increasing number of nodes.](image)
Storage Subsystem evaluation

- Results shown are best performance numbers after hyper parameter sweep for each configuration.
- Intel Caffe 1.0.4, Imagenet compressed lmdb dataset, /dev/shm, Resnet_50_64_nodes_8k_batch model, MKL DNN, MLSL, SKL 6142/6148, OPA, 192 GB memory, HDD 1Tb Sata, SSD, 2x 400GB Raid0
Resnet_50: Impact of thread count on BDW at 4 nodes

- Optimize for the platform. 30 threads out performs fully subscribed nodes.
- MLSL library needs some dedicated cores for optimal performance
Containerization

- Results within run to run variation as well as node to node variation
- Gold 6148, 192 GB, Compressed Imagenet, /dev/shm, Resnet_50_8k_batch model. Singularity 2.3.1