Simplify System Software Stack Development and Maintenance

Jeff Adams
Intel HPC Platform Software Product Manager
Data Center Solutions Group

Courtesy of openHPC
Session Agenda and Objective

• Why a community system software stack?
• The HPC system software problems we all share
• The OpenHPC community
• The OpenHPC software stack
• How to get involved
Current State of System Software Efforts

Fragmented efforts across the ecosystem – “Everyone building their own solution.”

A desire to get exascale performance & speed up software adoption of hardware innovation

New complex workloads (ML, Big Data, etc.) drive more complexity into the software stack

THE REALITY: We will not be able to get where we want to go without a major change in system software development
Community Effort to Realize Future State

A Shared Repository

- Security
- Power Management
- System Performance Monitoring
- Application Libraries
- Parallel File Systems
- Dev Tools

Stable HPC Platform Software that:

- Fuels a vibrant and efficient HPC software ecosystem
- Takes advantage of hardware innovation & drives revolutionary technologies
- Eases traditional HPC application development and testing at scale
- Extends to new workloads (ML, analytics, big data)
- Accommodates new environments (i.e., cloud)
OpenHPC History

ISC ’15
‘Birds of a Feather’ (BoF) discussion about the merits of and interest in a community supported HPC repository and management framework

SC ’15
Follow-on BoF for a comprehensive open community HPC software stack

Linux* Foundation
Working group collaborating to define participation agreement, initial governance structure and solicit volunteers

Linux Foundation
Announces technical, leadership and member investment milestones with founding members and formal governance structure
OpenHPC Community Mission and Vision

Mission
To provide a reference collection of open-source HPC software components and best practices, lowering barriers to deployment, advancement, and use of modern HPC methods and tools.

Vision
OpenHPC components and best practices will enable and accelerate innovation and discoveries by broadening access to state-of-the-art, open-source HPC methods and tools in a consistent environment, supported by a collaborative, worldwide community of HPC users, developers, researchers, administrators, and vendors.
A Linux Foundation Collaborative Project

WWW.OpenHPC.Community
OpenHPC Stack Overview
OpenHPC Components—v1.3.4

<table>
<thead>
<tr>
<th>Functional Areas</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base OS</td>
<td>CentOS 7.4, SLES12 SP3</td>
</tr>
<tr>
<td>Architecture</td>
<td>x86_64, aarch64</td>
</tr>
<tr>
<td>Administrative Tools</td>
<td>Conman, Ganglia, Lmod, LosF, Nagios, pdsh, pdsh-mod-slurm, prun, EasyBuild, ClusterShell, mrsh, Genders, Shine, Spack, test-suite</td>
</tr>
<tr>
<td>Provisioning</td>
<td>Warewulf, xCAT</td>
</tr>
<tr>
<td>Resource Mgmt.</td>
<td>SLURM, Munge, PBS Professional, PMIx</td>
</tr>
<tr>
<td>Runtimes</td>
<td>OpenMP, OCR, Singularity</td>
</tr>
<tr>
<td>I/O Services</td>
<td>Lustre client, BeeGFS client</td>
</tr>
<tr>
<td>Numerical/Scientific Libraries</td>
<td>Boost, GSL, FFTW, Hypre, Metis, Mumps, OpenBLAS, PETSc, PLASMA, Scalapack, Scotch, SLEPc, SuperLU, SuperLU_Dist, Trilinos</td>
</tr>
<tr>
<td>I/O Libraries</td>
<td>HDF5 (pHDF5), NetCDF (including C++ and Fortran interfaces), Adios</td>
</tr>
<tr>
<td>Compiler Families</td>
<td>GNU (gcc, g++, gfortran), Clang/LLVM</td>
</tr>
<tr>
<td>MPI Families</td>
<td>MVAPICH2, OpenMPI, MPICH</td>
</tr>
<tr>
<td>Development Tools</td>
<td>Autotools, cmake, hwloc, mpi4py, R, SciPy/NumPy, Valgrind</td>
</tr>
<tr>
<td>Performance Tools</td>
<td>PAPI, IMB, mpiP, pdtoolkit TAU, Scalasca, ScoreP, SIONLib</td>
</tr>
</tbody>
</table>
Basic Cluster Install Example

- Starting install guide/recipe targeted for flat hierarchy
- Leverages image-based provisioner: Warewulf or xCAT
 - PXE boot (stateful or stateless)
 - Optionally connect external Lustre file system
- Need hardware-specific information to support (remote) bare-metal provisioning
OpenHPC Development Infrastructure

• The ‘usual’ software engineering stuff:
 • GitHub (SCM and issue tracking/planning)
 • Continuous Integration (CI) Testing (Jenkins)
 • Documentation (Latex)

• Capable build/packaging system
 • At present: we target a common delivery/access mechanism that adopts Linux sysadmin familiarity
 • Require Flexible System to manage builds
 • A system using Open Build Service (OBS) supported by back-end git

OpenHPC Build System: OBS

- Manage Build Process
- Drive Builds for multiple repositories
- Repeatable builds
- Generate binary and src rpms
- Publish corresponding package repositories
- Client/server architecture supports distributed build slaves and multiple architectures
OpenHPC Integration/Testing/Validation

- Install recipes
- Cross-package interaction
- Development environment
- Mimic use cases common in HPC deployments
- Upgrade mechanism
OpenHPC Integration/Test/Validation

- Standalone integration test infrastructure
- Families of tests that can be used during:
 - Initial install process
 - Post-install process
 - Tests that touch all of the major components installed
- Expectation is that each new component included will need corresponding integration test collateral
- Integration tests are included in the GitHub repo
- Global testing harness includes a number of embedded subcomponents
OpenHPC New Software Requests & Additions

• Submission site: https://github.com/openhpc/submissions
• Quarterly reviews
• Next deadline: December 8, 2017
• 18 submissions accepted since launch
OpenHPC Community BoF Event

Wednesday, November 15th
12:15 – 1:15
Location: 507
OpenHPC Booth: 395

[Northwest corner]
Thank you!

Courtesy of openHPC

Jeff Adams
jeff.adams@intel.com
971.470.6701
Backup
OpenHPC Community Governance Overview

- Governing Board
- Board Representatives
 - Board Representatives for other Members, Indirect Representation (X:1)
- TSC Director
- TSC
 - Technical Project Leadership
 - Architecture, Component selection, releases, day-to-day tech work
- HPC Community
OpenHPC TSC Role Overview

OpenHPC
Technical Steering Committee (TSC)

- Project Leader
- Integration Testing Coordinator(s)
- Upstream Component Development Representative(s)
- End-User / Site Representative(s)
- Maintainers