Galactos: Computing the Anisotropic 3-point Correlation Function for 2 Billion Galaxies

Brian Friesen (NERSC), Md. Mostofa Ali Patwary (Intel), Brian Austin (NERSC), Nadathur Satish (Intel), Zachary Slepian (LBNL), Narayanan Sundaram (Intel), Deborah Bard (NERSC), Daniel J. Eisenstein (Harvard-Smithsonian Center for Astrophysics), Jack Deslippe (NERSC), Pradeep Dubey (Intel), Prabhat (NERSC)

Quantifying the structure of the universe

How does the balance between gravity and dark energy shape the distribution of matter in the Universe?

- Distribution of matter in the Universe can be characterized by using galaxy locations to construct correlation functions.
- The three-point correlation function (3PCF) compares counts of triplets of galaxies with a random distribution – excess correlation indicates clustering of matter on a particular distance scale.
- Naive algorithm scales as the cube of the number of galaxies considered.

Novel algorithm for evaluating the 3PCF

- Expand the galaxy density in basis of spherical harmonics and radial distance bins.
- Change of basis allows 3PCF to be evaluated from distribution of galaxy pairs: scales as $O(N_{basis} N^2) < O(N^3)$.
- Anisotropy: directionality means we can study galaxies moving in their local gravity field, in addition to expansion of the universe: additional insight into the nature of gravity.

Results

Strong scaling of Galactos code on Cori, using the Outer Rim dataset corresponding to 128 nodes (28.8 million galaxies).

Achievements

- We have solved an open problem in cosmology for the next decade. Galactos can compute the 3PCF of all galaxies in the observable universe on Cori in one day.

References: