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1 INTRODUCTION 

Intel® processor graphics is a proprietary Intel technology that provides graphics, compute, 

media, and display capabilities for many of Intel’s processor system-on-a-chip (SoC) products. 

This whitepaper focuses on the components of Gen11 architecture. For short hand, in this 

paper we may use the term Gen11 to refer to just those components. Processor products 

derived from Intel processor graphics Gen11 will be released in the near future. 

. 

  



 
Intel® Processor Graphics Gen11 Architecture                               4 

 

2 ARCHITECTURE HIGHLIGHTS 

Intel’s on-die integrated processor graphics architecture offers outstanding real time 3D 

rendering and media performance. In addition, its underlying compute architecture also offers 

general purpose compute capabilities that delivers up to a teraFLOP performance. The 

architecture of Intel processor graphics delivers a full complement of high-throughput 

floating-point and integer compute capabilities, a layered high bandwidth memory hierarchy, 

and deep integration with on-die CPUs and other on-die SoC devices. While Gen11 will 

typically ship with 64EUs, there may be different configurations. 

Up to a TERAFLOP Performance 

 Gen11 processor graphics is based on Intel’s 10nm process utilizing the 3rd generation 

FinFET technology. Additional refinements have been implemented throughout the micro 

architecture to provide significant performance per watt improvements. Gen11 supports 

all the major APIs DirectX™*, OpenGL™*, Vulkan™*, OpenCL™* and Metal™*. 

 Gen11 consists of 64 execution units (EUs) which increases the core compute capability by 

2.67x1 over Gen9. Gen11 addresses the corresponding bandwidth needs by improving 

compression, increasing L3 cache as well as increasing peak memory bandwidth.  

In addition to the raw improvements in compute and memory bandwidth increases, Gen11 

introduces key new features that enable higher performance by reducing the amount of 

redundant work. 

Coarse pixel shading (CPS) 

 Coarse pixel shading is a technique that Intel® first described in the seminal 2014 High 

Performance Graphics Paper “Coarse Pixel Shading.” Games today typically provide 

mechanism to render at lower resolution and then upscale to selected screen resolution to 

enable playable frame rates with high DPI screens. This may result in artifacts such as 

aliasing or jaggies resulting in markedly diminished visual quality.  

 Coarse pixel shading enables application developers with a new rate control on pixel 

shading invocations. CPS is better than upscaling because it allows developers to preserve 

the visibility sampling at the render target resolution while sampling the more slowly 

varying color values at the coarse pixel rate. By removing the upsampling stage, CPS can 

improve the overall performance.    

Position Only Shading Tile Based Rendering (PTBR)  

 The motivation of tile-based rendering is to reduce memory bandwidth by efficiently 

managing multiple render passes to data per tile on die.   

                                                        

1 Assumes Gen11 GT2 to Gen9 GT2 at ISO-Frequency 

https://software.intel.com/sites/default/files/managed/fa/65/coarse_pixel_shading.pdf
https://software.intel.com/sites/default/files/managed/fa/65/coarse_pixel_shading.pdf


 
Intel® Processor Graphics Gen11 Architecture                               5 

 

 In order to support tile based rendering, Gen11 adds a parallel geometry pipeline that acts 

as a tile binning engine. It is used ahead of the render pipeline for visibility binning pre-

pass per tile. It loops over geometry per tile and consumes visibility stream for that tile.  

 PTBR accomplishes its goal to keep data per tile on die by utilizing the L3 cache which has 

been enhanced to support color and Z formats. This collapses all the memory reads and 

writes within the L3 cache thereby reducing the external bandwidth. 
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3 SYSTEM ON A CHIP (SOC) ARCHITECTURE  

Intel’s® processors are complex SoCs integrating multiple CPU cores, Intel® Gen11 processor 

graphics and additional fixed functions all on a single shared silicon die. The architecture 

implements multiple unique clock domains, which have been partitioned as a per-CPU core 

clock domain, a processor graphics clock domain, and a ring interconnect clock domain. The 

SoC architecture is designed to be extensible for a range of products and enable efficient wire 

routing between components within the SoC. 

 

 

Figure 1: Intel® core processor, SoC and its ring interconnect architecture. 
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3.1 RING INTERCONNECT 
The on-die bus between CPU cores, caches, and Intel® processor graphics is a ring based 

topology with dedicated local interfaces for each connected “agent” including the Intel 

processor graphics. A system agent is also connected to the ring which facilitates all off-chip 

system memory transactions to/from CPU cores and to/from Intel processor graphics. Intel® 

processors include a shared Last Level Cache (LLC) that is also connected to the ring. In 

addition, the LLC is also shared with Intel processor graphics.  
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4 THE GEN11 PROCESSOR GRAPHICS ARCHITECTURE  

Gen11 architecture brings the next generation of processor graphics based on Intel’s latest 

10nm process for Core® Processors. Gen11 represents a monolithic design adding significant 

micro-architectural effort to improve performance per watt efficiency. Gen11 architecture is 

targeted for modern thin and light mainstream and premium designs. 

Gen11 architecture is an evolution over Gen9 with enhancements throughout the architecture 

to improve performance per flop by removing bottlenecks and improving the efficiency of the 

pipeline.  

Gen11 is a 64EU 

Architecture 

supporting 3D 

rendering, compute, 

programmable and 

fixed function media 

capabilities. Gen11 

architecture is split 

into: Global Assets 

which contains some 

fixed function blocks 

that interface to the 

rest of the SoC, the 

Media FF, the 2D Blitter 

and the Slice. The Slice 

houses the 3D Fixed 

Function Geometry, 8 

sub-slices containing 

the EUs, and a slice 

common that contains 

the rest of the fixed 

function blocks 

supporting the render 

pipeline and L3 cache. 

Figure2 reflects this 

categorization. 

  

      
Figure 2: Gen11 Slice Architecture 
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4.1 GLOBAL ASSETS, MEDIA FF AND GTI 
Global Assets presents a hardware and software interface from GPU to the rest of the SoC 

including Power Management.  

Graphics Technology Interface (GTI) is the gateway between GPU and the rest of the SoC. The 

rest of the SoC includes memory hierarchy elements such as the shared LLC memory and 

system DRAM.  

The GTI in Gen11 has been improved to provide higher bandwidth, going from 32B/clock to a 

64B/clock interface for write operations. Additionally, the internal queues are sized to handle 

latency and higher bandwidth in the SoC. 

As shown in Figure 2, Media Fixed Functions (Media FF) are located outside of the Slice and 

the Media Sampler is placed alongside the Texture Sampler inside the slice.  The Media 

Sampler is a co-processor to the EU to execute select media primitives while the Media FF’s 

perform larger tasks (e.g. frame or slice boundary) with independent front-ends including the 

Multi-format Codec (MFX), Visual Quality Enhancement (VQE) and Scaler and Format 

Conversion (SFC) units.  MFX performs decode and encode of various video codec standards, 

VQE is a pixel processing pipeline for pre\post-processing, and SFC is an in-line scaler with 

memory format conversion capabilities. 

The Media FF baseline configuration increases in Gen11 to include 2 MFX (up from 1 in Gen9) 

along with 1 VQE and 1 SFC.  The 2 MFX units can be used for better concurrency such as 

video playback and video encoding simultaneously. Alternatively, workloads can utilize both 

engines concurrently to increase performance or reduce clock frequencies to increase battery 

life. 

With Gen11, MFX VP9 decode bit depth support is increased up to10bits which is required for 

HDR video scenarios.  Additionally, both HEVC and VP9 have been improved to support higher 

quality chroma subsampling of 4:2:2 and 4:4:4 for both HEVC and VP9.  4:2:2 benefits users in 

high-end video production while 4:4:4 is optimal for screen content such as text\document 

screen recording and sharing.  MFX encoding on Gen11 introduces VP9 support and 

significantly improves HEVC encoding compression efficiency over Gen9. 

Gen11 VQE expands hardware denoise bit depth to 10bits.  High dynamic range (HDR) 

workloads will benefit from new software programmable 3DLUT tables such has HDR2HDR 

and HDR2SDR tone mapping. 
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4.2 ARCHITECTURE CONFIGURATIONS, SPEEDS, AND FEEDS 
The following table presents the theoretical peak throughput of the compute architecture of 

Intel processor graphics, aggregated across the entire graphics product architecture. Values 

are stated as “per clock cycle”, as final product clock rates were not available at time of this 

writing. It also shows a comparison to Gen9 GT2 

 

Figure 3: Key Peak Metrics Gen9 and Gen11 

  

Key Peak Metrics Gen9 GT2 Gen11 GT2 
Slice Attribute 

# of Slices 1 1 

# of Sub-Slices 3 8 

# of Cores (EUs) 24 (3x8) 64 (8x8) 

Single Precision FLOPs per Clock (MAD) 384 1024 

Half Precision FLOPs per Clock (MAD) 768 2048 

Register File Total 672KB(=3x224KB) 1792KB(=8x224KB) 

# of Samplers 3 8 

Point/Bilinear Texel’s/Clock (32bpt) 12 32 

Point/Bilinear Texel’s/Clock (64bpt) 12 32 

Shared Local Memory Total 192KB(=3 x 64KB)* 512KB(=8 x 64KB) 

Slice-Common Attributes   

Pixels/Clock (RGBA8) wo. Alpha Blend 8 16 

Pixels/Clock (RGBA8) w. Alpha Blend 8 16 

HiZ Zixel’s/Clock 64 128 

L3$ Cache 768 KB 3072 KB 

Geometry Attributes   

Primitive / Clock (backface Cull – strips) 1 1 

Primitive / Clock (backface Cull – lists) 0.67 0.67 

Global Attributes 

GTI Bandwidth (Bytes/Clock) R: 64 

W: 32 

R: 64 

W: 64 

LLC Configuration 2-8MB TBD 

DRAM Configuration 2x64 LPDDR3/DDR4 4x32 LPDDR4/DDR4 
* Note - Gen9 L3$ includes SLM 
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4.3 SLICE ARCHITECTURE 
For Gen11-based products, 8 Subslices are aggregated into 1 slice. Thus a single slice 

aggregates a total of 64 EU. Aside from grouping Subslices, the Slice integrates additional 

logic for the geometry, L3 cache, and the Slice Common. 

 

Figure 4: Gen11 detailed block diagram. 
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4.3.1 Geometry 

Gen11 3D Geometry Fixed Function contains the typical render front-end that maps to the 

logical pipeline in DirectX™, Vulkan™, OpenGL™ or Metal™ APIs. Additionally, it includes a 

Position Only Shading pipeline, or POSh pipeline used to implement Tile-Based Rendering 

(PTBR). This Section describes the traditional geometry pipeline while section 5.2 describes 

the POSh pipeline used in tile based rendering. 

Vertex fetch (VF), one of the initial stages in the geometry pipe is responsible for fetching 

vertex data from memory for use in subsequent vertices, reformatting it, and writing the 

results into an internal buffer. Typically, a vertex consists of more than one attribute, e.g. 

position, color, normal, texture coordinates, etc. Usage of more vertex attributes has grown 

with increases in workload complexity. To that end, Gen11 increases the VF input rate from 4 

attributes/clock to 6 attributes/clock as well as improves the input data cache efficiency. 

Another important VF change in Gen11 is the increase in number of draw calls handled 

concurrently to enable streaming of back to back draw calls. Newer APIs like DX12™* and 

Vulkan™* have significantly reduced the overheads for draw calls, enabling workloads to 

improve visuals by increasing the number of draw calls per frame.  

Gen11 has also made tessellation improvements. It provides up to a 2X increase in the Hull 

Shader thread dispatch rate as well as further increases the output topology efficiency, 

especially for patch primitives subject to low tessellation factors. 

4.3.2 Subslice Architecture 

In Gen11 architecture, arrays of EUs are instantiated into a group called a Subslice. For 

scalability, product architects can choose the number of EUs per subslice. For most Gen11-

based products, each subslice contains 8 EUs. Each subslice contains its own local thread 

dispatcher unit and its own supporting instruction caches. Each Subslice also includes a 3D 

texture sampler unit, a Media Sampler Unit and a dataport unit.   

4.3.2.1 Execution Unit (EU) Architecture 

The foundational building block of Gen11 architecture is the execution unit, commonly 

abbreviated as EU. The architecture of an EU is a combination of simultaneous multi-threading 

(SMT) and fine-grained interleaved multi-threading (IMT). These EUs are compute processors 

that drive multiple issue, single instruction, multiple data arithmetic logic units (SIMD ALUs) 

pipelined across multiple threads, for high-throughput floating-point and integer compute. 

The fine-grain threaded nature of the EUs ensures continuous streams of ready to execute 

instructions, while also enabling latency hiding of longer operations such as memory 

scatter/gather, sampler requests, or other system communication. Depending on the software 

workload, the hardware threads within an EU may all be executing the same compute kernel 

code, or each EU thread could be executing code from a completely different compute kernel.  
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Figure 4: The Execution Unit (EU) 

4.3.2.2 SIMD ALUs 

In each EU, the primary computation units are a pair of SIMD floating-point units (ALUs). 

Although called ALUs, they support both floating-point and integer computation. These units 

can execute up to four 32-bit floating-point (or integer) operations, or up to eight 16-bit 

floating-point operations. Effectively, each EU can execute 16 FP32 floating point operations 

per clock [2 ALUs x SIMD-4 x 2 Ops (Add + Mul)] and 32 FP16 floating point operations per 

clock [2 ALUs x SIMD-8 x 2 Ops (Add + Mul)]. 

Each EU is multi-threaded to enable latency hiding for long sampler or memory operations.  

Associated with each EU is 28KB register file (GRF) with 32bytes/register. 

As depicted in Figure 4, one of the ALUs support 16-bit and 32-bit integer operations and the 

other ALUs provides extended math capability to support high-throughput transcendental 

math functions.  

4.3.2.3 SIMD Code Generation for SPMD Programming Models 

Compilers for single program multiple data (SPMD) programming models, such as OpenCL™*, 

Microsoft DirectX** Compute Shader, OpenGL** Compute, and C++AMP™*, generate SIMD code 

to map multiple kernel instances2 to be executed simultaneously within a given hardware 

thread. The exact number of kernel instances per-thread is a heuristic driven compiler choice. 

We refer to this compiler choice as the dominant SIMD-width of the kernel. In OpenCL™* and 
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DirectX™* Compute Shader, SIMD-8, SIMD-16, and SIMD-32 are the most common SIMD-

width targets. 

4.3.3 Shared Local Memory 

The SLM is a 64KB highly banked data structure accessible from the 8 EUs in the Subslice. The 

change in architecture is depicted Figure 5. In Gen11 architecture, the SLM and memory 

access are split such that the one is through the dataport function while the other is accessed 

directly from the EUs.  

The proximity to the EUs provides low latency and higher efficiency since SLM traffic does not 

interfere with L3/memory access through the dataport or sampler. The SLM is banked to byte 

granularity allowing high degree of access flexibility from the EUs. This change provides an 

increase in the overall effective rate of local and global atomics.  

 

           Figure 5: EU latency and atomic efficiency 

SPMD programming model constructs such as OpenCL’s™* local memory space or DirectX™* 

Compute Shader’s shared memory space are shared across a single work-group (thread-

group). For software kernel instances that use shared local memory, driver runtimes typically 

map all instances within a given OpenCL™* work-group (or a DirectX™* thread group) to EU 

threads within a single subslice. Thus all kernel instances within a work-group will share 

access to the same 64 Kbyte shared local memory partition. Because of this property, an 

application’s accesses to shared local memory should scale with the number of subslices. 

4.3.4 Texture Sampler 

The Texture Sampler is a read-only memory fetch unit that may be used for sampling of 

texture and image surface types 1D, 2D, 3D, cube, and buffers. The sampler includes a cache, a 

decompressor, and a filter block.  The Texture Sampler supports dynamic decompression of 

many block compression texture formats such as DirectX™* BC1-BC7, and OpenGL™* ETC, 
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ETC2, and EAC. Additionally, the texture sampler supports lossless compressed surfaces.  The 

sampler is also compliant with the latest Compute and 3D API’s for capability and quality. 

Improvements on Gen11 include: 

 Sampling rate for anisotropic filtering of 32bit surface formats is increased by 2X for all 

depths of anisotropy (2X anisotropic filtering is now the same rate as trilinear filtering). 

 Sampling rate on volumetric surfaces has been increased by 2X on point sampled 

32bit formats as well as bilinear filtered 64bit formats (point-sample is now full-rate of 

4ppc for most surface formats). 

 Sampling rate for trilinear filtering of 2D surfaces with 64bit surface formats is 

increased by 2X. 

4.3.5 Dataport 

Each Subslice also contains a memory interface unit called the Dataport. The Dataport 

supports efficient un-typed/typed read/write operations to L3 cache, render cache and other 

buffers through flexible SIMD scatter/gather operations. To maximize memory bandwidth, the 

unit dynamically coalesces scattered memory operations into fewer operations over non-

duplicated 64-byte cache line requests. For example, a SIMD-16 gather operation against 16 

unique offset addresses for 16 32-bit floating-point values, might be coalesced to a single 64-

byte read operation if all the addresses fall within a single cache line.  

Gen11 reduces L3 cache and memory BW for blend operations that do not require read 

access to target surfaces. 

4.4 SLICE COMMON 

4.4.1 Raster  

The Raster block converts polygons to a block of pixels called subspans.  Gen11 significantly 

increases the conversion rate by 16x for 1xAA and by 4X for 4xMSAA.  

In addition to normal rasterization, Gen9 supports conservative rasterization which tests pixel 

for partial coverage and marks it as covered for rasterization.  This implementation meets the 

requirements of tier3 hardware per D3D12 specification and enables advanced rendering 

algorithms for collision detection, occlusion culling, shadows or visibility detection. Gen11 

improves conservative rasterization throughput by about 8x.  

Besides supporting rendering primitives, Gen devices also support line rendering which are 

typically important in workstation applications.  

4.4.2 Depth 

The depth test function is used to perform the “Z Buffer” hidden surface removal. The depth 

test function can be used to discard pixels based on a comparison between the incoming 

pixel’s depth value and the current depth buffer value associated with the pixel.  
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Depth tests are performed at two levels of granularity, coarse and fine. The coarse tests are 

performed by HiZ where testing is done on 8x4 pixel block granularity. In addition, the HiZ 

block supports Fast Clear which allows clearing depth without writing the depth buffer. The 

test performed at a finer granularity (per pixel, per sample) are done by the Z block.  

 

Figure 6: Back annotation depth test 

In Gen11, the Z buffer min/max is back annotated into HiZ buffer reducing future 

nondeterministic or ambiguous tests. When HiZ buffer does not have visibility data till post 

shader, the resulting tests are nondeterministic in HiZ resulting in Z to per pixel testing. Back 

annotation allows updating the HiZ buffer with results from Z buffer as shown in figure 6. HiZ 

test range is narrowed, resulting in coarse testing instead of pixel level for normal rendering or 

per sample level when MSAA is enabled.  Thus, the overall depth test throughput is increased 

while the corresponding Z memory BW is simultaneously decreased.   

4.4.3 Pixel Dispatch 

The Pixel Dispatch block accumulates subspans/pixel information and dispatches threads to 

the execution units.  The pixel dispatcher, decides the SIMD width of the thread to be 

executed, choosing between SIMD8, SIMD16 and SIMD32. Pixel Dispatch chooses this to 

maximize execution efficiency and utilization of the register file. The block load balances 

across the shader units and ensures order in which pixels retire from the shader units.   

In Gen11, pixel dispatch includes the function of “coarse pixel shader” which is described in 

detail in Sections 5.1. When CPS is enabled, the coarse pixels generated are packed which 

reduces the number of pixel shading invocations. The reference or the mapping of a coarse 

pixel to pixel is maintained until the pixel shader is executed. 

4.4.4 Pixel Backend/Blend 

The Pixel Backend (PBE) is the last stage of the rendering pipeline which includes the cache to 

hold the color values. This pipeline stage also handles the color blend functions across several 

source and destination surface formats. Lossless color compression is handled here as well. 
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Gen11 exploits use of lower precision in render target formats to reduce power for blending 

operations. 

4.4.5 Level-3 Data Cache 

In Gen11, the L3 data cache capacity has been increased to 3MB. Each application context has 

flexibility as to how much of the L3 memory structure is allocated in:  

 Application L3 data cache 

 System buffers for fixed-function pipelines.  

For example, 3D rendering contexts often allocate more L3 as system buffers to support their 

fixed-function pipelines.  

All sampler caches and instruction caches are backed by L3 cache. The interface between each 

Dataport and the L3 data cache enables both read and write of 64 bytes per cycle.  

Z, HiZ, Stencil and color buffers may also be backed in L3 specifically when tiling is enabled.  

In typical 3D/Compute workloads, partial access is common and occurs in batches and makes 

ineffective use of memory bandwidth. In Gen11, when accessing memory, L3 cache 

opportunistically combines partial access of a pair of 32B to a single 64B thereby improving 

efficiency.  

4.5 MEMORY  

4.5.1 Memory Efficiency Improvements 

Intel® processor graphics architecture continuously invests in technologies which improve 

graphic memory efficiency besides improving raw unified memory bandwidth. 

Gen9 architecture introduced lossless compression of both render targets and dynamic 

textures. Games tend to have a lot of render to texture cases where the intermediate rendered 

buffer is used as a texture in subsequent drawcalls within a frame. As games target higher 

quality visuals, the bandwidth used by dynamic textures as well as higher resolution becomes 

increasingly important. Lossless compression aims to mitigate this by taking advantage of the 

fact that adjacent pixel blocks within a render target vary slowly or are similar which exposes 

opportunity for compression. Compression yields write bandwidth savings when the data is 

evicted from L3 cache to memory as well as for read bandwidth savings in case of dynamic 

textures or alpha blending of surfaces. These improvements results in additional power 

savings. 

Gen11 enables two new optimizations to lossless color compression: 

 Support for sRGB surface formats for dynamic textures. Use of gamma corrected color 

space is important especially as the usage of high dynamic range is increasing.  
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 The compression algorithm exploits the property that a group of pixels can have the 

same color when shaded using coarse pixel shading as discussed in section 5.1.  

Additionally, memory efficiency is further improved by tile based rendering technology (PTBR) 

discussed in section 5.2. Fundamentally, it makes the render target and depth buffer stay on 

chip memory during the render pass while overdraws are collapsed. There are opportunities 

to discard temporary surfaces by not writing back to memory. PTBR additionally improves 

sampler access locality and makes on chip cache hierarchy more efficient.  

4.5.2 Unified Memory Architecture 

Intel® processor graphics architecture has long pioneered sharing DRAM physical memory 

with the CPU. This unified memory architecture offers a number of system design, power 

efficiency, and programmability advantages over PCI Express-hosted discrete memory 

systems.  

The obvious advantage is that shared physical memory enables zero copy buffer transfers 

between CPUs and Gen11 compute architecture. By zero copy, we mean that no buffer copy is 

necessary since the physical memory is shared. Moreover, the architecture further augments 

the performance of such memory sharing with a shared LLC cache. The net effect of this 

architecture benefits performance, conserves memory footprint, and indirectly conserves 

system power not spent needlessly copying data. Shared physical memory and zero copy 

buffer transfers are programmable through the buffer allocation mechanisms in APIs such as 

Vulkan™*, OpenCL2™* and DirectX12™*. 

Gen11 supports LPDDR4 memory technology capable of delivering much higher bandwidth 

than previous generations. The entire memory sub-system is optimized for low latency and 

high bandwidth.  Gen11 memory sub-system features several optimizations including fabric 

routing policies, and enhanced memory controller scheduling algorithms which increases 

overall memory bandwidth efficiency.  The memory sub-system also includes QOS features 

that help balance bandwidth demands from multiple high-bandwidth agents. Figure 7 shows 

the SoC chip and memory hierarchy. 
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Figure 7: SoC chip level memory hierarchy and its theoretical peak bandwidths 

 

4.6 DISPLAY CONTROLLER 
The graphics story is not complete without describing the display controller which “paints” the 

images on the screen. Like Gen 9, the display controller in Gen11 is also integrated in the 

system agent largely because of the display’s affinity with memory.  Over the life of a device, 

the display controller can consume far more memory bandwidth that any other client.  This 

means that display controller is also one of the most active participants in power management 

of the SoC.  Gen11 display controller has several new features which focus specifically on 

power management.  Panel Self Refresh and Display Context Save and Restore are two of the 

most prominent features.   

Panel Self Refresh is an embedded panel feature available on eDP™*.  PSR panels have a 

memory copy of the most recently displayed frame which, when the display controller 

indicates, can be swapped for the display stream.  This allows the display controller to stop 

clocks and go to a low power state.  When combined with the Display Controller Save and 

Restore feature, it can save significant power by additionally shutting off power to the display 

pipelines.  Display Save and Restore saves the context of the display controller into a sustain 

power SRAM, and then restores the state after the power returns.  This feature not only saves 
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power in the display controller, but also in the entire device as it allows the SoC to reach very 

deep power states while it is running. 

Another key feature of Gen11 platform is the integration of the USB Type-C subsystem.  The 

display controller has dedicated outputs for USB Type-C and DisplayPort™* alt mode is 

supported on all USB Type-C outputs.  Additionally, output of the display controller can target 

the Thunderbolt controller, which can also tunnel DisplayPort™*.   

The display controller also has made internal structural changes to improve performance. 

Chief among these is a shift to a wider pixel processing path in response to the increasing 

resolutions of monitors.  As the number of pixels increases the rate at which the display 

controller must process them increases as well, so processing pixels two at time reduces the 

internal frequency required for the display controller by 50%.  Even though this creates a 

larger display controller, it still comes out ahead as power is more directly impacted by 

frequency.   

Another power feature is display streaming “race to halt”.  This feature adds a large buffer on 

die for the display controller to fetch in to.  This allows the display controller to collect pixels 

very quickly for a large part of the screen, and then shut down the fabric and memory 

controller while just using the streaming buffer. With the large buffer included in Gen11, the 

display engine can concentrate its memory accesses into a burst which allows the memory 

controller to go into power saving modes for longer periods of time than previous designs. 

The display controller also supports a compressed memory format generated by the graphics 

engine to reduce memory bandwidth.   

Display upgrades were not limited to power features.  The display scaler, which is used for 

both plane scaling and pipe scaling also got an upgrade going from 7x5 tap filters to 7x7 

filters which provides a notable increase in quality.  The entire display pixel pipe has gained 

precision in response to the forthcoming deep color and High Dynamic Range displays.  Deep 

Color refers to those displays that support a color gamut that is larger (sometimes much 

larger) than the standard sRGB color space.  High Dynamic Range device additionally increase 

the range of brightness levels available. 

Finally, support for DisplayPort™* Adaptive Sync has been added for the embedded display.  

This feature allows the display in combination with a supported monitor to adjust the refresh 

rate based on the workload.  This is usually used to adjust the refresh rate to match the frame 

rate of the renderer or media stream.  This provides a significantly improved user experience 

over devices that do not support adaptive sync. Note, asynchronous mode typically referred to 

as Vsync off. 
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5 KEY GEN11 TECHNOLOGIES 

 

5.1 COARSE PIXEL SHADING  
 

 

Figure 8: The canonical Citadel 1 CPS image rendered at 2560x1440 with a 1x1 pixel rate on the left and 2x2 CPS 

shading on the right. While CPS halves the number of shader invocations, there is almost no perceivable difference 

on a high pixel density display. An up-scaled image with no anti-aliasing applied is also shown for comparison 

rendered at 1280x720. Reprinted with permission from [Vaidyanathan et al. 2014]. 

Coarse Pixel Shading (CPS) was pioneered by Intel® in a High-Performance Graphics 2014 

research paper [Vaidyanathan et al. 2014]. At that time, we observed that screen resolution 

was scaling faster than raw pixel throughput in the PC gaming ecosystem and worked to 

develop techniques to address the problem. Gen11 is Intel’s first generation of hardware to 

support this capability. 

CPS allows us to decrease the total amount of work done when rendering portions of the 

scene where the decrease in shading rate will not be noticed. We can also use this technique 

to lower the total overall power requirements or hit specific frame rate targets by decreasing 

the shading resolution while preserving the fidelity of the edges of geometry in the scene.  

A common technique to handle pixel bound workloads is to render at a lower resolution then 

up scaled to the target framebuffer resolution. Coarse pixel shading is a more advanced 

technique designed to preserve the visibility information at the higher render target resolution 
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while sampling the more slowly varying color values at the coarse pixel rate. Performance is 

further improved as there is no up-scaling stage involved in CPS-all coarse pixel resolutions 

are rendered in a single pass! 

We envision the primary use cases for coarse pixel shading include the following scenarios: 

1. Objects at a distance from the camera: Objects far away from the camera are less likely 

to need as much detail as objects nearer to the camera as their details are not as 

noticeable, particularly in high density scenes common in today’s game engines and 

when the object takes up a small amount of screen real estate.  

2. Objects under motion: Objects undergoing motion make it harder to make out details 

in the shading complexity, therefore it doesn’t make sense to spend as much time to 

render fidelity the user isn’t going to see. While this manifests as a blurring of content 

to the human visual system, the reason is due to object movement and not a post 

processing effect. 

3. Objects undergoing blur or obfuscation: Engines today use any number of post-

processing techniques to realize the artistic intent of the game experience, including 

but not limited to motion blur, bokeh effects, heat caustics, fog and other 

atmospherics. These effects are going to blur or obscure rendered content.  

4. Objects in user’s visual periphery: It is known that the foveal region is a region around 

the center of the eye of about 5 degrees [Guenter et al. 2012]. The human visual 

system does not make out the details outside of this region, it therefore doesn’t make 

sense to spend time rendering high detail in this region. If we can track the eye we can 

know where the user is looking and set up our rendering pipeline to spend most of the 

rendering time in these “foveal” regions, and less in the periphery. Even without a 

foveated rendering scenario, it can be valuable to concentrate rendering in specific 

regions of the screen by creating a center point of the user foci and gradually decrease 

the sampling rate based on the distance from this focus point.  

5. Objects known to have slow varying lighting parameters: Some content, for example a 

stylistic cartoon theme, contains objects that have objects that have parameters that 

vary smoothly across many pixels. These scenarios are perfect candidates for coarse 

pixel shading.  

6. Power savings: When computing fewer color values relative to screen size over a naïve 

per pixel approach we can save power. This can be important in mobile scenarios 

where battery life is a factor.  

7. Cloud Rendering: Rendering in the cloud is likely to introduce encoding artifacts that 

dominate the degradation in visual quality at the end user display. Therefore, we can 

better utilize the server capacity by decreasing the pixel shading rate via CPS but 

maintain higher quality than if we just reduced the rendering resolution, resulting in an 

overall higher quality end user experience. 

How it works 
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Figure 9: CPS rates can take on these values in the X and Y dimension. The blue dot is the default position for where 

the pixel shader is evaluated. This value is then propagated to all the pixels that are members of this coarse pixel.   

Coarse Pixel Shading works by reducing the number of times the pixel shader executes, thus 

saving valuable rendering time. To preserve detail along edges, sample coverage and depth 

continue to be sampled at the render target resolution, only the color value is determined at a 

reduced frequency then propagated to each pixel that makes up the coarse pixel. A key 

advantage of coarse pixel shading is that the coarse pixel shading rates (2x2, 1x2, 4x4, etc.) 

can be processed in a single pass.  

 

Figure 10: In this image, the geometry with red boxes are identified as being sufficiently far away from the camera, 

and of minor significance to the overall image quality, so the color shading frequency can be reduced with no 

discernable impact to the visual quality on a per frame basis and improved overall frame rate over time.  
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Using Coarse Pixel Shading 

Coarse Pixel Shading is easy to integrate into an application and requires no re-authoring or 

re-export of the content in the application. After initialization of CPS and enabling via the 

pipeline state description the CPS rate only needs to be specified before a draw call is 

executed. In addition, we support a foveated scheme described in more detail in the Coarse 

Pixel Shading Whitepaper available at the Intel Developer Zone [Lake, et al. 2019]. 

Integrating CPS into an application 

Coarse Pixel Shading is a key feature and the best way to take advantage of it is leveraging the 

integration of the use cases described above into your application. For integration details and 

sample code see the CPS programming guide available on the Intel Developer Zone. 

CPS and MSAA 

Coarse Pixel shading and MSAA work together but remain decoupled in Gen11. For example, 

4xMSAA with 2x2 coarse pixels means that there are 4 samples within a single regular pixel 

with 4 regularly sized pixels making up the single coarse pixel. Each pixel continues to have 4 

sample points for coverage but will obtain the color value for the coarse pixel from the center 

(or centroid) of the coarse pixel.  
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5.2 POSITION ONLY SHADING TILE BASED RENDERING  
 

Tile-based rendering technology has been employed to reduce the enormous bandwidth 

demands of contemporary GPUs. In a tile-based approach, a render target is divided into n 

number of rectangular regions – i.e. tiles – that in turn are rendered one at a time. At the most 

basic level, only the triangles that affect a tile are rendered to limit the working set.  

One can assume that these tile-based rendering engines move the color and depth buffer out 

of main memory to the on-chip tile cache. Since this cache is much closer to the compute 

engines, far less power is required to access it. The bandwidth advantage comes by 

implementing the depth/stencil testing and blending entirely via on-chip tile cache.  

Moreover, tiling also helps in suppressing the write bandwidth associated with overdrawn 

pixels. Finally, there are other advantages where the tiling engines have to write only a 

minimum set of results to memory – i.e. no depth/stencil values, and no multi-sample render 

target data. 

 

Figure 11: Block diagram of Position only tile based rendering (PTBR) 

As depicted in Figure 11, Gen11 adopts position only shading tile-based rendering (PTBR).  The 

PTBR paradigm includes the utilization of two distinct geometry pipes: a new position only 

shading (POSH) pipe and a typical render pipe.  

The POSH pipe executes the position shader in parallel with the main application, but typically 

generates results much faster as it only shades position attributes and avoids rendering of pixels. 

The POSH pipe runs ahead and uses the shaded position attribute to compute visibility 

information for triangles to gauge whether they are culled or not. Object visibility recording unit 

of the POSH pipe calculates the visibility, compresses the information and records it in memory. 

Note that the object visibility recording unit can be programmed to record visibility of multiple 

tiles simultaneously.  

The POSH pipe is programmed via the driver to get the visibility for multiple streams in parallel 

where each stream represents a tile of the whole render target. Next, the POSH pipe loops over 
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geometry per tile and consumes per tile visibility for deciding whether the geometry is included 

or excluded which is then subsequently sent to the render pipe. The render pipe is responsible 

for rendering each of the tiles. 

Additionally, the size and the number of tiles are calculated via the driver where it uses 

information like number of attached render targets and surface formats of the render-targets 

to generate additional information of bytes/pixel. Tile cache size and bytes/pixel determines 

the dimensions as well as the number of tiles.  

Moreover, tile-based rendering assists Multisample Anti-Aliasing (MSAA) to resolve bandwidth 

performance. Furthermore, PTBR can also be used to support tiling extensions like discarding 

depth/multi-sample render-targets, pixel local storage etc.  Note that PTBR does not require 

ISV intervention unlike CPS, however, PTBR can provide benefit to applications which utilize 3D 

graphics APIs designed for tile-based rendering architectures.   
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5.3 INTEL ADAPTIVE SYNC 
 

Modern day personal computer usages can typically include gaming, video playback, 

browsing, and office usages such as PowerPoints™* and Spreadsheets™*. As a consequence, 

the various content is created at different frame rates. Traditionally, display panels function at 

a constant refresh rate (e.g.60Hz), which in most cases, doesn’t exactly match with the content 

frame rates that are unique and varying.  

For example, the rendered frame rate for gaming could vary from 30 frames per second (fps) 

to 120 fps or more. The usual frame rates for video playback are 24 fps, 30 fps, and 60 fps 

while the frame rates for the other desktop applications might be much lower. 

With the V-Sync mode of operation, the display buffer is only refreshed during the vertical 

blanking interval between frames. If the usage’s render framerate is lower than the refresh rate 

of the display, there will be repeat frames rendered on the display from time to time. This 

effect degrades the user experience by manifesting as stutter and lag. If the render framerate 

is higher than the refresh rate of the display, the updated frame must wait until the vertical 

blanking period to be displayed on the panel. Although this is technically undesirable, it may 

not be perceivable to the user. 

  

Figure 12: Screen tearing example 1  
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Contemporary display controllers support a mode where the updated frame can immediately 

be delivered to the display without waiting for the vertical blanking period and hence avoiding 

the delay but creating artifacts known as “tearing.”. This mode is known as Asynchronous 

(Async) mode. In Async mode, screen tearing is apparent when the rendered frame rate is not 

in sync with the display panel refresh rate. Asynchronous mode typically referred to as Vsync 

off. The display controller tries to always read the latest updated frame from the GPU but 

keep the display refresh rate constant. During such an operation, when the display controller 

receives a new frame buffer when a partial write out of the current frame is done, it 

immediately switches to fetch the data from the new frame buffer for the remaining portion of 

the current display frame. This creates the unwanted and annoying tearing effect on the 

display. The following pictures show the screen tearing effect when the Display controller is 

running in Async mode. 

Adaptive sync is a VESA™* DisplayPort™* (DP) standard whose function is to dynamically 

synchronize the display panel refresh rate with the varying GPU render rate. In Gen11, it 

provides stutter and tear free gaming possible on eDP™* panels that support the dynamically 

adjustable refresh rate range.  

When the frame render rate by the GPU falls in the supported refresh rate range of the panel, 

the display controller adapts and syncs the display refresh rate to that of the GPU. Display 

controller makes this by increasing or decreasing the frame blanking period to either decrease 

or increase the display refresh rate respectively to match the GPU render rate. This totally 

alleviates the issue of the screen tear that would occur if the display controller runs on the 

Async mode of operation.  

When the GPU render rate is lower than the minimum refresh rate supported by the panel, 

display controller's low frame rate compensation feature makes sure to fill in the additional 

frames to decrease visual artifacts. When the GPU render rate is higher than the maximum 

refresh rate, the frame refresh on the panel occurs at the maximum refresh rate of the panel. 
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Figure 13 shows an identical frame comparison of between Async and Adaptive Sync modes 

of operations respectively.  

 

 
 

 

Figure 13: Adaptive sync solution for frame tearing 
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