
Intel® Processor Graphics Gen11

Architecture

Version 1.0

Intel® Processor Graphics Gen11 Architecture 1

CONTENTS

1 Introduction ... 3

2 Architecture Highlights ... 4

3 System on a Chip (SoC) Architecture .. 6

3.1 Ring Interconnect ... 7

4 The Gen11 Processor Graphics Architecture .. 8

4.1 Global Assets, Media FF and GTI ... 9

4.2 Architecture Configurations, Speeds, and Feeds .. 10

4.3 Slice Architecture .. 11

4.3.1 Geometry ... 12

4.3.2 Subslice Architecture ... 12

4.3.3 Shared Local Memory .. 14

4.3.4 Texture Sampler ... 14

4.3.5 Dataport ... 15

4.4 Slice Common .. 15

4.4.1 Raster .. 15

4.4.2 Depth .. 15

4.4.3 Pixel Dispatch .. 16

4.4.4 Pixel Backend/Blend .. 16

4.4.5 Level-3 Data Cache ... 17

4.5 Memory ... 17

4.5.1 Memory Efficiency Improvements .. 17

4.5.2 Unified Memory Architecture ... 18

4.6 Display Controller ... 19

5 Key Gen11 Technologies .. 21

5.1 Coarse Pixel Shading ... 21

5.2 Position only shading tile based rendering ... 25

5.3 Intel Adaptive Sync .. 27

6 More Information ... 31

7 Notices .. 31

Intel® Processor Graphics Gen11 Architecture 2

FIGURE 1: INTEL® CORE PROCESSOR, SOC AND ITS RING INTERCONNECT ARCHITECTURE. 6
FIGURE 2: GEN11 SLICE ARCHITECTURE .. 8
FIGURE 3: KEY PEAK METRICS GEN9 AND GEN11 .. 10
FIGURE 4: THE EXECUTION UNIT (EU) .. 13
FIGURE 5: EU LATENCY AND ATOMIC EFFICIENCY .. 14
FIGURE 6: BACK ANNOTATION DEPTH TEST ... 16
FIGURE 7: SOC CHIP LEVEL MEMORY HIERARCHY AND ITS THEORETICAL PEAK BANDWIDTHS 19
FIGURE 8: THE CANONICAL CITADEL 1 CPS IMAGE RENDERED AT 2560X1440. .. 21
FIGURE 9: CPS RATES CAN TAKE ON THESE VALUES IN THE X AND Y DIMENSION. ... 23
FIGURE 10: IN THIS IMAGE, THE GEOMETRY WITH RED BOXES ARE IDENTIFIED ... 23
FIGURE 11: BLOCK DIAGRAM OF POSITION ONLY TILE BASED RENDERING (PTBR) .. 25
FIGURE 12: SCREEN TEARING EXAMPLE 1 ... 27
FIGURE 13: ADAPTIVE SYNC SOLUTION FOR FRAME TEARING.. 29

file:///C:/Users/nwillow/Desktop/ICL%20White%20paper%20dev/ww10'19%20Draft/no%20perf/The%20Architecture%20of%20Intel%20Processor%20Graphics%20Gen11_R1.0%2031419%20tsw_nw_ks.docx%23_Toc3554642
file:///C:/Users/nwillow/Desktop/ICL%20White%20paper%20dev/ww10'19%20Draft/no%20perf/The%20Architecture%20of%20Intel%20Processor%20Graphics%20Gen11_R1.0%2031419%20tsw_nw_ks.docx%23_Toc3554652

Intel® Processor Graphics Gen11 Architecture 3

1 INTRODUCTION

Intel® processor graphics is a proprietary Intel technology that provides graphics, compute,

media, and display capabilities for many of Intel’s processor system-on-a-chip (SoC) products.

This whitepaper focuses on the components of Gen11 architecture. For short hand, in this

paper we may use the term Gen11 to refer to just those components. Processor products

derived from Intel processor graphics Gen11 will be released in the near future.

.

Intel® Processor Graphics Gen11 Architecture 4

2 ARCHITECTURE HIGHLIGHTS

Intel’s on-die integrated processor graphics architecture offers outstanding real time 3D

rendering and media performance. In addition, its underlying compute architecture also offers

general purpose compute capabilities that delivers up to a teraFLOP performance. The

architecture of Intel processor graphics delivers a full complement of high-throughput

floating-point and integer compute capabilities, a layered high bandwidth memory hierarchy,

and deep integration with on-die CPUs and other on-die SoC devices. While Gen11 will

typically ship with 64EUs, there may be different configurations.

Up to a TERAFLOP Performance

 Gen11 processor graphics is based on Intel’s 10nm process utilizing the 3rd generation

FinFET technology. Additional refinements have been implemented throughout the micro

architecture to provide significant performance per watt improvements. Gen11 supports

all the major APIs DirectX™*, OpenGL™*, Vulkan™*, OpenCL™* and Metal™*.

 Gen11 consists of 64 execution units (EUs) which increases the core compute capability by

2.67x1 over Gen9. Gen11 addresses the corresponding bandwidth needs by improving

compression, increasing L3 cache as well as increasing peak memory bandwidth.

In addition to the raw improvements in compute and memory bandwidth increases, Gen11

introduces key new features that enable higher performance by reducing the amount of

redundant work.

Coarse pixel shading (CPS)

 Coarse pixel shading is a technique that Intel® first described in the seminal 2014 High

Performance Graphics Paper “Coarse Pixel Shading.” Games today typically provide

mechanism to render at lower resolution and then upscale to selected screen resolution to

enable playable frame rates with high DPI screens. This may result in artifacts such as

aliasing or jaggies resulting in markedly diminished visual quality.

 Coarse pixel shading enables application developers with a new rate control on pixel

shading invocations. CPS is better than upscaling because it allows developers to preserve

the visibility sampling at the render target resolution while sampling the more slowly

varying color values at the coarse pixel rate. By removing the upsampling stage, CPS can

improve the overall performance.

Position Only Shading Tile Based Rendering (PTBR)

 The motivation of tile-based rendering is to reduce memory bandwidth by efficiently

managing multiple render passes to data per tile on die.

1 Assumes Gen11 GT2 to Gen9 GT2 at ISO-Frequency

https://software.intel.com/sites/default/files/managed/fa/65/coarse_pixel_shading.pdf
https://software.intel.com/sites/default/files/managed/fa/65/coarse_pixel_shading.pdf

Intel® Processor Graphics Gen11 Architecture 5

 In order to support tile based rendering, Gen11 adds a parallel geometry pipeline that acts

as a tile binning engine. It is used ahead of the render pipeline for visibility binning pre-

pass per tile. It loops over geometry per tile and consumes visibility stream for that tile.

 PTBR accomplishes its goal to keep data per tile on die by utilizing the L3 cache which has

been enhanced to support color and Z formats. This collapses all the memory reads and

writes within the L3 cache thereby reducing the external bandwidth.

Intel® Processor Graphics Gen11 Architecture 6

3 SYSTEM ON A CHIP (SOC) ARCHITECTURE

Intel’s® processors are complex SoCs integrating multiple CPU cores, Intel® Gen11 processor

graphics and additional fixed functions all on a single shared silicon die. The architecture

implements multiple unique clock domains, which have been partitioned as a per-CPU core

clock domain, a processor graphics clock domain, and a ring interconnect clock domain. The

SoC architecture is designed to be extensible for a range of products and enable efficient wire

routing between components within the SoC.

Figure 1: Intel® core processor, SoC and its ring interconnect architecture.

Intel® Processor Graphics Gen11 Architecture 7

3.1 RING INTERCONNECT
The on-die bus between CPU cores, caches, and Intel® processor graphics is a ring based

topology with dedicated local interfaces for each connected “agent” including the Intel

processor graphics. A system agent is also connected to the ring which facilitates all off-chip

system memory transactions to/from CPU cores and to/from Intel processor graphics. Intel®

processors include a shared Last Level Cache (LLC) that is also connected to the ring. In

addition, the LLC is also shared with Intel processor graphics.

Intel® Processor Graphics Gen11 Architecture 8

4 THE GEN11 PROCESSOR GRAPHICS ARCHITECTURE

Gen11 architecture brings the next generation of processor graphics based on Intel’s latest

10nm process for Core® Processors. Gen11 represents a monolithic design adding significant

micro-architectural effort to improve performance per watt efficiency. Gen11 architecture is

targeted for modern thin and light mainstream and premium designs.

Gen11 architecture is an evolution over Gen9 with enhancements throughout the architecture

to improve performance per flop by removing bottlenecks and improving the efficiency of the

pipeline.

Gen11 is a 64EU

Architecture

supporting 3D

rendering, compute,

programmable and

fixed function media

capabilities. Gen11

architecture is split

into: Global Assets

which contains some

fixed function blocks

that interface to the

rest of the SoC, the

Media FF, the 2D Blitter

and the Slice. The Slice

houses the 3D Fixed

Function Geometry, 8

sub-slices containing

the EUs, and a slice

common that contains

the rest of the fixed

function blocks

supporting the render

pipeline and L3 cache.

Figure2 reflects this

categorization.

Figure 2: Gen11 Slice Architecture

Intel® Processor Graphics Gen11 Architecture 9

4.1 GLOBAL ASSETS, MEDIA FF AND GTI
Global Assets presents a hardware and software interface from GPU to the rest of the SoC

including Power Management.

Graphics Technology Interface (GTI) is the gateway between GPU and the rest of the SoC. The

rest of the SoC includes memory hierarchy elements such as the shared LLC memory and

system DRAM.

The GTI in Gen11 has been improved to provide higher bandwidth, going from 32B/clock to a

64B/clock interface for write operations. Additionally, the internal queues are sized to handle

latency and higher bandwidth in the SoC.

As shown in Figure 2, Media Fixed Functions (Media FF) are located outside of the Slice and

the Media Sampler is placed alongside the Texture Sampler inside the slice. The Media

Sampler is a co-processor to the EU to execute select media primitives while the Media FF’s

perform larger tasks (e.g. frame or slice boundary) with independent front-ends including the

Multi-format Codec (MFX), Visual Quality Enhancement (VQE) and Scaler and Format

Conversion (SFC) units. MFX performs decode and encode of various video codec standards,

VQE is a pixel processing pipeline for pre\post-processing, and SFC is an in-line scaler with

memory format conversion capabilities.

The Media FF baseline configuration increases in Gen11 to include 2 MFX (up from 1 in Gen9)

along with 1 VQE and 1 SFC. The 2 MFX units can be used for better concurrency such as

video playback and video encoding simultaneously. Alternatively, workloads can utilize both

engines concurrently to increase performance or reduce clock frequencies to increase battery

life.

With Gen11, MFX VP9 decode bit depth support is increased up to10bits which is required for

HDR video scenarios. Additionally, both HEVC and VP9 have been improved to support higher

quality chroma subsampling of 4:2:2 and 4:4:4 for both HEVC and VP9. 4:2:2 benefits users in

high-end video production while 4:4:4 is optimal for screen content such as text\document

screen recording and sharing. MFX encoding on Gen11 introduces VP9 support and

significantly improves HEVC encoding compression efficiency over Gen9.

Gen11 VQE expands hardware denoise bit depth to 10bits. High dynamic range (HDR)

workloads will benefit from new software programmable 3DLUT tables such has HDR2HDR

and HDR2SDR tone mapping.

Intel® Processor Graphics Gen11 Architecture 10

4.2 ARCHITECTURE CONFIGURATIONS, SPEEDS, AND FEEDS
The following table presents the theoretical peak throughput of the compute architecture of

Intel processor graphics, aggregated across the entire graphics product architecture. Values

are stated as “per clock cycle”, as final product clock rates were not available at time of this

writing. It also shows a comparison to Gen9 GT2

Figure 3: Key Peak Metrics Gen9 and Gen11

Key Peak Metrics Gen9 GT2 Gen11 GT2
Slice Attribute

of Slices 1 1

of Sub-Slices 3 8

of Cores (EUs) 24 (3x8) 64 (8x8)

Single Precision FLOPs per Clock (MAD) 384 1024

Half Precision FLOPs per Clock (MAD) 768 2048

Register File Total 672KB(=3x224KB) 1792KB(=8x224KB)

of Samplers 3 8

Point/Bilinear Texel’s/Clock (32bpt) 12 32

Point/Bilinear Texel’s/Clock (64bpt) 12 32

Shared Local Memory Total 192KB(=3 x 64KB)* 512KB(=8 x 64KB)

Slice-Common Attributes

Pixels/Clock (RGBA8) wo. Alpha Blend 8 16

Pixels/Clock (RGBA8) w. Alpha Blend 8 16

HiZ Zixel’s/Clock 64 128

L3$ Cache 768 KB 3072 KB

Geometry Attributes

Primitive / Clock (backface Cull – strips) 1 1

Primitive / Clock (backface Cull – lists) 0.67 0.67

Global Attributes

GTI Bandwidth (Bytes/Clock) R: 64

W: 32

R: 64

W: 64

LLC Configuration 2-8MB TBD

DRAM Configuration 2x64 LPDDR3/DDR4 4x32 LPDDR4/DDR4
* Note - Gen9 L3$ includes SLM

Intel® Processor Graphics Gen11 Architecture 11

4.3 SLICE ARCHITECTURE
For Gen11-based products, 8 Subslices are aggregated into 1 slice. Thus a single slice

aggregates a total of 64 EU. Aside from grouping Subslices, the Slice integrates additional

logic for the geometry, L3 cache, and the Slice Common.

Figure 4: Gen11 detailed block diagram.

Intel® Processor Graphics Gen11 Architecture 12

4.3.1 Geometry

Gen11 3D Geometry Fixed Function contains the typical render front-end that maps to the

logical pipeline in DirectX™, Vulkan™, OpenGL™ or Metal™ APIs. Additionally, it includes a

Position Only Shading pipeline, or POSh pipeline used to implement Tile-Based Rendering

(PTBR). This Section describes the traditional geometry pipeline while section 5.2 describes

the POSh pipeline used in tile based rendering.

Vertex fetch (VF), one of the initial stages in the geometry pipe is responsible for fetching

vertex data from memory for use in subsequent vertices, reformatting it, and writing the

results into an internal buffer. Typically, a vertex consists of more than one attribute, e.g.

position, color, normal, texture coordinates, etc. Usage of more vertex attributes has grown

with increases in workload complexity. To that end, Gen11 increases the VF input rate from 4

attributes/clock to 6 attributes/clock as well as improves the input data cache efficiency.

Another important VF change in Gen11 is the increase in number of draw calls handled

concurrently to enable streaming of back to back draw calls. Newer APIs like DX12™* and

Vulkan™* have significantly reduced the overheads for draw calls, enabling workloads to

improve visuals by increasing the number of draw calls per frame.

Gen11 has also made tessellation improvements. It provides up to a 2X increase in the Hull

Shader thread dispatch rate as well as further increases the output topology efficiency,

especially for patch primitives subject to low tessellation factors.

4.3.2 Subslice Architecture

In Gen11 architecture, arrays of EUs are instantiated into a group called a Subslice. For

scalability, product architects can choose the number of EUs per subslice. For most Gen11-

based products, each subslice contains 8 EUs. Each subslice contains its own local thread

dispatcher unit and its own supporting instruction caches. Each Subslice also includes a 3D

texture sampler unit, a Media Sampler Unit and a dataport unit.

4.3.2.1 Execution Unit (EU) Architecture

The foundational building block of Gen11 architecture is the execution unit, commonly

abbreviated as EU. The architecture of an EU is a combination of simultaneous multi-threading

(SMT) and fine-grained interleaved multi-threading (IMT). These EUs are compute processors

that drive multiple issue, single instruction, multiple data arithmetic logic units (SIMD ALUs)

pipelined across multiple threads, for high-throughput floating-point and integer compute.

The fine-grain threaded nature of the EUs ensures continuous streams of ready to execute

instructions, while also enabling latency hiding of longer operations such as memory

scatter/gather, sampler requests, or other system communication. Depending on the software

workload, the hardware threads within an EU may all be executing the same compute kernel

code, or each EU thread could be executing code from a completely different compute kernel.

Intel® Processor Graphics Gen11 Architecture 13

Figure 4: The Execution Unit (EU)

4.3.2.2 SIMD ALUs

In each EU, the primary computation units are a pair of SIMD floating-point units (ALUs).

Although called ALUs, they support both floating-point and integer computation. These units

can execute up to four 32-bit floating-point (or integer) operations, or up to eight 16-bit

floating-point operations. Effectively, each EU can execute 16 FP32 floating point operations

per clock [2 ALUs x SIMD-4 x 2 Ops (Add + Mul)] and 32 FP16 floating point operations per

clock [2 ALUs x SIMD-8 x 2 Ops (Add + Mul)].

Each EU is multi-threaded to enable latency hiding for long sampler or memory operations.

Associated with each EU is 28KB register file (GRF) with 32bytes/register.

As depicted in Figure 4, one of the ALUs support 16-bit and 32-bit integer operations and the

other ALUs provides extended math capability to support high-throughput transcendental

math functions.

4.3.2.3 SIMD Code Generation for SPMD Programming Models

Compilers for single program multiple data (SPMD) programming models, such as OpenCL™*,

Microsoft DirectX** Compute Shader, OpenGL** Compute, and C++AMP™*, generate SIMD code

to map multiple kernel instances2 to be executed simultaneously within a given hardware

thread. The exact number of kernel instances per-thread is a heuristic driven compiler choice.

We refer to this compiler choice as the dominant SIMD-width of the kernel. In OpenCL™* and

Intel® Processor Graphics Gen11 Architecture 14

DirectX™* Compute Shader, SIMD-8, SIMD-16, and SIMD-32 are the most common SIMD-

width targets.

4.3.3 Shared Local Memory

The SLM is a 64KB highly banked data structure accessible from the 8 EUs in the Subslice. The

change in architecture is depicted Figure 5. In Gen11 architecture, the SLM and memory

access are split such that the one is through the dataport function while the other is accessed

directly from the EUs.

The proximity to the EUs provides low latency and higher efficiency since SLM traffic does not

interfere with L3/memory access through the dataport or sampler. The SLM is banked to byte

granularity allowing high degree of access flexibility from the EUs. This change provides an

increase in the overall effective rate of local and global atomics.

 Figure 5: EU latency and atomic efficiency

SPMD programming model constructs such as OpenCL’s™* local memory space or DirectX™*

Compute Shader’s shared memory space are shared across a single work-group (thread-

group). For software kernel instances that use shared local memory, driver runtimes typically

map all instances within a given OpenCL™* work-group (or a DirectX™* thread group) to EU

threads within a single subslice. Thus all kernel instances within a work-group will share

access to the same 64 Kbyte shared local memory partition. Because of this property, an

application’s accesses to shared local memory should scale with the number of subslices.

4.3.4 Texture Sampler

The Texture Sampler is a read-only memory fetch unit that may be used for sampling of

texture and image surface types 1D, 2D, 3D, cube, and buffers. The sampler includes a cache, a

decompressor, and a filter block. The Texture Sampler supports dynamic decompression of

many block compression texture formats such as DirectX™* BC1-BC7, and OpenGL™* ETC,

Intel® Processor Graphics Gen11 Architecture 15

ETC2, and EAC. Additionally, the texture sampler supports lossless compressed surfaces. The

sampler is also compliant with the latest Compute and 3D API’s for capability and quality.

Improvements on Gen11 include:

 Sampling rate for anisotropic filtering of 32bit surface formats is increased by 2X for all

depths of anisotropy (2X anisotropic filtering is now the same rate as trilinear filtering).

 Sampling rate on volumetric surfaces has been increased by 2X on point sampled

32bit formats as well as bilinear filtered 64bit formats (point-sample is now full-rate of

4ppc for most surface formats).

 Sampling rate for trilinear filtering of 2D surfaces with 64bit surface formats is

increased by 2X.

4.3.5 Dataport

Each Subslice also contains a memory interface unit called the Dataport. The Dataport

supports efficient un-typed/typed read/write operations to L3 cache, render cache and other

buffers through flexible SIMD scatter/gather operations. To maximize memory bandwidth, the

unit dynamically coalesces scattered memory operations into fewer operations over non-

duplicated 64-byte cache line requests. For example, a SIMD-16 gather operation against 16

unique offset addresses for 16 32-bit floating-point values, might be coalesced to a single 64-

byte read operation if all the addresses fall within a single cache line.

Gen11 reduces L3 cache and memory BW for blend operations that do not require read

access to target surfaces.

4.4 SLICE COMMON

4.4.1 Raster

The Raster block converts polygons to a block of pixels called subspans. Gen11 significantly

increases the conversion rate by 16x for 1xAA and by 4X for 4xMSAA.

In addition to normal rasterization, Gen9 supports conservative rasterization which tests pixel

for partial coverage and marks it as covered for rasterization. This implementation meets the

requirements of tier3 hardware per D3D12 specification and enables advanced rendering

algorithms for collision detection, occlusion culling, shadows or visibility detection. Gen11

improves conservative rasterization throughput by about 8x.

Besides supporting rendering primitives, Gen devices also support line rendering which are

typically important in workstation applications.

4.4.2 Depth

The depth test function is used to perform the “Z Buffer” hidden surface removal. The depth

test function can be used to discard pixels based on a comparison between the incoming

pixel’s depth value and the current depth buffer value associated with the pixel.

Intel® Processor Graphics Gen11 Architecture 16

Depth tests are performed at two levels of granularity, coarse and fine. The coarse tests are

performed by HiZ where testing is done on 8x4 pixel block granularity. In addition, the HiZ

block supports Fast Clear which allows clearing depth without writing the depth buffer. The

test performed at a finer granularity (per pixel, per sample) are done by the Z block.

Figure 6: Back annotation depth test

In Gen11, the Z buffer min/max is back annotated into HiZ buffer reducing future

nondeterministic or ambiguous tests. When HiZ buffer does not have visibility data till post

shader, the resulting tests are nondeterministic in HiZ resulting in Z to per pixel testing. Back

annotation allows updating the HiZ buffer with results from Z buffer as shown in figure 6. HiZ

test range is narrowed, resulting in coarse testing instead of pixel level for normal rendering or

per sample level when MSAA is enabled. Thus, the overall depth test throughput is increased

while the corresponding Z memory BW is simultaneously decreased.

4.4.3 Pixel Dispatch

The Pixel Dispatch block accumulates subspans/pixel information and dispatches threads to

the execution units. The pixel dispatcher, decides the SIMD width of the thread to be

executed, choosing between SIMD8, SIMD16 and SIMD32. Pixel Dispatch chooses this to

maximize execution efficiency and utilization of the register file. The block load balances

across the shader units and ensures order in which pixels retire from the shader units.

In Gen11, pixel dispatch includes the function of “coarse pixel shader” which is described in

detail in Sections 5.1. When CPS is enabled, the coarse pixels generated are packed which

reduces the number of pixel shading invocations. The reference or the mapping of a coarse

pixel to pixel is maintained until the pixel shader is executed.

4.4.4 Pixel Backend/Blend

The Pixel Backend (PBE) is the last stage of the rendering pipeline which includes the cache to

hold the color values. This pipeline stage also handles the color blend functions across several

source and destination surface formats. Lossless color compression is handled here as well.

Intel® Processor Graphics Gen11 Architecture 17

Gen11 exploits use of lower precision in render target formats to reduce power for blending

operations.

4.4.5 Level-3 Data Cache

In Gen11, the L3 data cache capacity has been increased to 3MB. Each application context has

flexibility as to how much of the L3 memory structure is allocated in:

 Application L3 data cache

 System buffers for fixed-function pipelines.

For example, 3D rendering contexts often allocate more L3 as system buffers to support their

fixed-function pipelines.

All sampler caches and instruction caches are backed by L3 cache. The interface between each

Dataport and the L3 data cache enables both read and write of 64 bytes per cycle.

Z, HiZ, Stencil and color buffers may also be backed in L3 specifically when tiling is enabled.

In typical 3D/Compute workloads, partial access is common and occurs in batches and makes

ineffective use of memory bandwidth. In Gen11, when accessing memory, L3 cache

opportunistically combines partial access of a pair of 32B to a single 64B thereby improving

efficiency.

4.5 MEMORY

4.5.1 Memory Efficiency Improvements

Intel® processor graphics architecture continuously invests in technologies which improve

graphic memory efficiency besides improving raw unified memory bandwidth.

Gen9 architecture introduced lossless compression of both render targets and dynamic

textures. Games tend to have a lot of render to texture cases where the intermediate rendered

buffer is used as a texture in subsequent drawcalls within a frame. As games target higher

quality visuals, the bandwidth used by dynamic textures as well as higher resolution becomes

increasingly important. Lossless compression aims to mitigate this by taking advantage of the

fact that adjacent pixel blocks within a render target vary slowly or are similar which exposes

opportunity for compression. Compression yields write bandwidth savings when the data is

evicted from L3 cache to memory as well as for read bandwidth savings in case of dynamic

textures or alpha blending of surfaces. These improvements results in additional power

savings.

Gen11 enables two new optimizations to lossless color compression:

 Support for sRGB surface formats for dynamic textures. Use of gamma corrected color

space is important especially as the usage of high dynamic range is increasing.

Intel® Processor Graphics Gen11 Architecture 18

 The compression algorithm exploits the property that a group of pixels can have the

same color when shaded using coarse pixel shading as discussed in section 5.1.

Additionally, memory efficiency is further improved by tile based rendering technology (PTBR)

discussed in section 5.2. Fundamentally, it makes the render target and depth buffer stay on

chip memory during the render pass while overdraws are collapsed. There are opportunities

to discard temporary surfaces by not writing back to memory. PTBR additionally improves

sampler access locality and makes on chip cache hierarchy more efficient.

4.5.2 Unified Memory Architecture

Intel® processor graphics architecture has long pioneered sharing DRAM physical memory

with the CPU. This unified memory architecture offers a number of system design, power

efficiency, and programmability advantages over PCI Express-hosted discrete memory

systems.

The obvious advantage is that shared physical memory enables zero copy buffer transfers

between CPUs and Gen11 compute architecture. By zero copy, we mean that no buffer copy is

necessary since the physical memory is shared. Moreover, the architecture further augments

the performance of such memory sharing with a shared LLC cache. The net effect of this

architecture benefits performance, conserves memory footprint, and indirectly conserves

system power not spent needlessly copying data. Shared physical memory and zero copy

buffer transfers are programmable through the buffer allocation mechanisms in APIs such as

Vulkan™*, OpenCL2™* and DirectX12™*.

Gen11 supports LPDDR4 memory technology capable of delivering much higher bandwidth

than previous generations. The entire memory sub-system is optimized for low latency and

high bandwidth. Gen11 memory sub-system features several optimizations including fabric

routing policies, and enhanced memory controller scheduling algorithms which increases

overall memory bandwidth efficiency. The memory sub-system also includes QOS features

that help balance bandwidth demands from multiple high-bandwidth agents. Figure 7 shows

the SoC chip and memory hierarchy.

Intel® Processor Graphics Gen11 Architecture 19

Figure 7: SoC chip level memory hierarchy and its theoretical peak bandwidths

4.6 DISPLAY CONTROLLER
The graphics story is not complete without describing the display controller which “paints” the

images on the screen. Like Gen 9, the display controller in Gen11 is also integrated in the

system agent largely because of the display’s affinity with memory. Over the life of a device,

the display controller can consume far more memory bandwidth that any other client. This

means that display controller is also one of the most active participants in power management

of the SoC. Gen11 display controller has several new features which focus specifically on

power management. Panel Self Refresh and Display Context Save and Restore are two of the

most prominent features.

Panel Self Refresh is an embedded panel feature available on eDP™*. PSR panels have a

memory copy of the most recently displayed frame which, when the display controller

indicates, can be swapped for the display stream. This allows the display controller to stop

clocks and go to a low power state. When combined with the Display Controller Save and

Restore feature, it can save significant power by additionally shutting off power to the display

pipelines. Display Save and Restore saves the context of the display controller into a sustain

power SRAM, and then restores the state after the power returns. This feature not only saves

Intel® Processor Graphics Gen11 Architecture 20

power in the display controller, but also in the entire device as it allows the SoC to reach very

deep power states while it is running.

Another key feature of Gen11 platform is the integration of the USB Type-C subsystem. The

display controller has dedicated outputs for USB Type-C and DisplayPort™* alt mode is

supported on all USB Type-C outputs. Additionally, output of the display controller can target

the Thunderbolt controller, which can also tunnel DisplayPort™*.

The display controller also has made internal structural changes to improve performance.

Chief among these is a shift to a wider pixel processing path in response to the increasing

resolutions of monitors. As the number of pixels increases the rate at which the display

controller must process them increases as well, so processing pixels two at time reduces the

internal frequency required for the display controller by 50%. Even though this creates a

larger display controller, it still comes out ahead as power is more directly impacted by

frequency.

Another power feature is display streaming “race to halt”. This feature adds a large buffer on

die for the display controller to fetch in to. This allows the display controller to collect pixels

very quickly for a large part of the screen, and then shut down the fabric and memory

controller while just using the streaming buffer. With the large buffer included in Gen11, the

display engine can concentrate its memory accesses into a burst which allows the memory

controller to go into power saving modes for longer periods of time than previous designs.

The display controller also supports a compressed memory format generated by the graphics

engine to reduce memory bandwidth.

Display upgrades were not limited to power features. The display scaler, which is used for

both plane scaling and pipe scaling also got an upgrade going from 7x5 tap filters to 7x7

filters which provides a notable increase in quality. The entire display pixel pipe has gained

precision in response to the forthcoming deep color and High Dynamic Range displays. Deep

Color refers to those displays that support a color gamut that is larger (sometimes much

larger) than the standard sRGB color space. High Dynamic Range device additionally increase

the range of brightness levels available.

Finally, support for DisplayPort™* Adaptive Sync has been added for the embedded display.

This feature allows the display in combination with a supported monitor to adjust the refresh

rate based on the workload. This is usually used to adjust the refresh rate to match the frame

rate of the renderer or media stream. This provides a significantly improved user experience

over devices that do not support adaptive sync. Note, asynchronous mode typically referred to

as Vsync off.

Intel® Processor Graphics Gen11 Architecture 21

5 KEY GEN11 TECHNOLOGIES

5.1 COARSE PIXEL SHADING

Figure 8: The canonical Citadel 1 CPS image rendered at 2560x1440 with a 1x1 pixel rate on the left and 2x2 CPS

shading on the right. While CPS halves the number of shader invocations, there is almost no perceivable difference

on a high pixel density display. An up-scaled image with no anti-aliasing applied is also shown for comparison

rendered at 1280x720. Reprinted with permission from [Vaidyanathan et al. 2014].

Coarse Pixel Shading (CPS) was pioneered by Intel® in a High-Performance Graphics 2014

research paper [Vaidyanathan et al. 2014]. At that time, we observed that screen resolution

was scaling faster than raw pixel throughput in the PC gaming ecosystem and worked to

develop techniques to address the problem. Gen11 is Intel’s first generation of hardware to

support this capability.

CPS allows us to decrease the total amount of work done when rendering portions of the

scene where the decrease in shading rate will not be noticed. We can also use this technique

to lower the total overall power requirements or hit specific frame rate targets by decreasing

the shading resolution while preserving the fidelity of the edges of geometry in the scene.

A common technique to handle pixel bound workloads is to render at a lower resolution then

up scaled to the target framebuffer resolution. Coarse pixel shading is a more advanced

technique designed to preserve the visibility information at the higher render target resolution

Intel® Processor Graphics Gen11 Architecture 22

while sampling the more slowly varying color values at the coarse pixel rate. Performance is

further improved as there is no up-scaling stage involved in CPS-all coarse pixel resolutions

are rendered in a single pass!

We envision the primary use cases for coarse pixel shading include the following scenarios:

1. Objects at a distance from the camera: Objects far away from the camera are less likely

to need as much detail as objects nearer to the camera as their details are not as

noticeable, particularly in high density scenes common in today’s game engines and

when the object takes up a small amount of screen real estate.

2. Objects under motion: Objects undergoing motion make it harder to make out details

in the shading complexity, therefore it doesn’t make sense to spend as much time to

render fidelity the user isn’t going to see. While this manifests as a blurring of content

to the human visual system, the reason is due to object movement and not a post

processing effect.

3. Objects undergoing blur or obfuscation: Engines today use any number of post-

processing techniques to realize the artistic intent of the game experience, including

but not limited to motion blur, bokeh effects, heat caustics, fog and other

atmospherics. These effects are going to blur or obscure rendered content.

4. Objects in user’s visual periphery: It is known that the foveal region is a region around

the center of the eye of about 5 degrees [Guenter et al. 2012]. The human visual

system does not make out the details outside of this region, it therefore doesn’t make

sense to spend time rendering high detail in this region. If we can track the eye we can

know where the user is looking and set up our rendering pipeline to spend most of the

rendering time in these “foveal” regions, and less in the periphery. Even without a

foveated rendering scenario, it can be valuable to concentrate rendering in specific

regions of the screen by creating a center point of the user foci and gradually decrease

the sampling rate based on the distance from this focus point.

5. Objects known to have slow varying lighting parameters: Some content, for example a

stylistic cartoon theme, contains objects that have objects that have parameters that

vary smoothly across many pixels. These scenarios are perfect candidates for coarse

pixel shading.

6. Power savings: When computing fewer color values relative to screen size over a naïve

per pixel approach we can save power. This can be important in mobile scenarios

where battery life is a factor.

7. Cloud Rendering: Rendering in the cloud is likely to introduce encoding artifacts that

dominate the degradation in visual quality at the end user display. Therefore, we can

better utilize the server capacity by decreasing the pixel shading rate via CPS but

maintain higher quality than if we just reduced the rendering resolution, resulting in an

overall higher quality end user experience.

How it works

Intel® Processor Graphics Gen11 Architecture 23

1 2 4

1

2

4

Figure 9: CPS rates can take on these values in the X and Y dimension. The blue dot is the default position for where

the pixel shader is evaluated. This value is then propagated to all the pixels that are members of this coarse pixel.

Coarse Pixel Shading works by reducing the number of times the pixel shader executes, thus

saving valuable rendering time. To preserve detail along edges, sample coverage and depth

continue to be sampled at the render target resolution, only the color value is determined at a

reduced frequency then propagated to each pixel that makes up the coarse pixel. A key

advantage of coarse pixel shading is that the coarse pixel shading rates (2x2, 1x2, 4x4, etc.)

can be processed in a single pass.

Figure 10: In this image, the geometry with red boxes are identified as being sufficiently far away from the camera,

and of minor significance to the overall image quality, so the color shading frequency can be reduced with no

discernable impact to the visual quality on a per frame basis and improved overall frame rate over time.

Intel® Processor Graphics Gen11 Architecture 24

Using Coarse Pixel Shading

Coarse Pixel Shading is easy to integrate into an application and requires no re-authoring or

re-export of the content in the application. After initialization of CPS and enabling via the

pipeline state description the CPS rate only needs to be specified before a draw call is

executed. In addition, we support a foveated scheme described in more detail in the Coarse

Pixel Shading Whitepaper available at the Intel Developer Zone [Lake, et al. 2019].

Integrating CPS into an application

Coarse Pixel Shading is a key feature and the best way to take advantage of it is leveraging the

integration of the use cases described above into your application. For integration details and

sample code see the CPS programming guide available on the Intel Developer Zone.

CPS and MSAA

Coarse Pixel shading and MSAA work together but remain decoupled in Gen11. For example,

4xMSAA with 2x2 coarse pixels means that there are 4 samples within a single regular pixel

with 4 regularly sized pixels making up the single coarse pixel. Each pixel continues to have 4

sample points for coverage but will obtain the color value for the coarse pixel from the center

(or centroid) of the coarse pixel.

Intel® Processor Graphics Gen11 Architecture 25

5.2 POSITION ONLY SHADING TILE BASED RENDERING

Tile-based rendering technology has been employed to reduce the enormous bandwidth

demands of contemporary GPUs. In a tile-based approach, a render target is divided into n

number of rectangular regions – i.e. tiles – that in turn are rendered one at a time. At the most

basic level, only the triangles that affect a tile are rendered to limit the working set.

One can assume that these tile-based rendering engines move the color and depth buffer out

of main memory to the on-chip tile cache. Since this cache is much closer to the compute

engines, far less power is required to access it. The bandwidth advantage comes by

implementing the depth/stencil testing and blending entirely via on-chip tile cache.

Moreover, tiling also helps in suppressing the write bandwidth associated with overdrawn

pixels. Finally, there are other advantages where the tiling engines have to write only a

minimum set of results to memory – i.e. no depth/stencil values, and no multi-sample render

target data.

Figure 11: Block diagram of Position only tile based rendering (PTBR)

As depicted in Figure 11, Gen11 adopts position only shading tile-based rendering (PTBR). The

PTBR paradigm includes the utilization of two distinct geometry pipes: a new position only

shading (POSH) pipe and a typical render pipe.

The POSH pipe executes the position shader in parallel with the main application, but typically

generates results much faster as it only shades position attributes and avoids rendering of pixels.

The POSH pipe runs ahead and uses the shaded position attribute to compute visibility

information for triangles to gauge whether they are culled or not. Object visibility recording unit

of the POSH pipe calculates the visibility, compresses the information and records it in memory.

Note that the object visibility recording unit can be programmed to record visibility of multiple

tiles simultaneously.

The POSH pipe is programmed via the driver to get the visibility for multiple streams in parallel

where each stream represents a tile of the whole render target. Next, the POSH pipe loops over

...

Visibility Info

POSH Pipe
Visibility Info

of tiles

RCS
Vertex Fetch

& Shading

PCS Memory

Tessellation
Geometry

Shader
Stream

Out
Clipper Setup

Pixel
Pipe

Vertex Fetch
& Shading

Clipper Setup

Render Pipe

Object Visibility
Recording

Intel® Processor Graphics Gen11 Architecture 26

geometry per tile and consumes per tile visibility for deciding whether the geometry is included

or excluded which is then subsequently sent to the render pipe. The render pipe is responsible

for rendering each of the tiles.

Additionally, the size and the number of tiles are calculated via the driver where it uses

information like number of attached render targets and surface formats of the render-targets

to generate additional information of bytes/pixel. Tile cache size and bytes/pixel determines

the dimensions as well as the number of tiles.

Moreover, tile-based rendering assists Multisample Anti-Aliasing (MSAA) to resolve bandwidth

performance. Furthermore, PTBR can also be used to support tiling extensions like discarding

depth/multi-sample render-targets, pixel local storage etc. Note that PTBR does not require

ISV intervention unlike CPS, however, PTBR can provide benefit to applications which utilize 3D

graphics APIs designed for tile-based rendering architectures.

Intel® Processor Graphics Gen11 Architecture 27

5.3 INTEL ADAPTIVE SYNC

Modern day personal computer usages can typically include gaming, video playback,

browsing, and office usages such as PowerPoints™* and Spreadsheets™*. As a consequence,

the various content is created at different frame rates. Traditionally, display panels function at

a constant refresh rate (e.g.60Hz), which in most cases, doesn’t exactly match with the content

frame rates that are unique and varying.

For example, the rendered frame rate for gaming could vary from 30 frames per second (fps)

to 120 fps or more. The usual frame rates for video playback are 24 fps, 30 fps, and 60 fps

while the frame rates for the other desktop applications might be much lower.

With the V-Sync mode of operation, the display buffer is only refreshed during the vertical

blanking interval between frames. If the usage’s render framerate is lower than the refresh rate

of the display, there will be repeat frames rendered on the display from time to time. This

effect degrades the user experience by manifesting as stutter and lag. If the render framerate

is higher than the refresh rate of the display, the updated frame must wait until the vertical

blanking period to be displayed on the panel. Although this is technically undesirable, it may

not be perceivable to the user.

Figure 12: Screen tearing example 1

Intel® Processor Graphics Gen11 Architecture 28

Contemporary display controllers support a mode where the updated frame can immediately

be delivered to the display without waiting for the vertical blanking period and hence avoiding

the delay but creating artifacts known as “tearing.”. This mode is known as Asynchronous

(Async) mode. In Async mode, screen tearing is apparent when the rendered frame rate is not

in sync with the display panel refresh rate. Asynchronous mode typically referred to as Vsync

off. The display controller tries to always read the latest updated frame from the GPU but

keep the display refresh rate constant. During such an operation, when the display controller

receives a new frame buffer when a partial write out of the current frame is done, it

immediately switches to fetch the data from the new frame buffer for the remaining portion of

the current display frame. This creates the unwanted and annoying tearing effect on the

display. The following pictures show the screen tearing effect when the Display controller is

running in Async mode.

Adaptive sync is a VESA™* DisplayPort™* (DP) standard whose function is to dynamically

synchronize the display panel refresh rate with the varying GPU render rate. In Gen11, it

provides stutter and tear free gaming possible on eDP™* panels that support the dynamically

adjustable refresh rate range.

When the frame render rate by the GPU falls in the supported refresh rate range of the panel,

the display controller adapts and syncs the display refresh rate to that of the GPU. Display

controller makes this by increasing or decreasing the frame blanking period to either decrease

or increase the display refresh rate respectively to match the GPU render rate. This totally

alleviates the issue of the screen tear that would occur if the display controller runs on the

Async mode of operation.

When the GPU render rate is lower than the minimum refresh rate supported by the panel,

display controller's low frame rate compensation feature makes sure to fill in the additional

frames to decrease visual artifacts. When the GPU render rate is higher than the maximum

refresh rate, the frame refresh on the panel occurs at the maximum refresh rate of the panel.

Intel® Processor Graphics Gen11 Architecture 29

Figure 13 shows an identical frame comparison of between Async and Adaptive Sync modes

of operations respectively.

Figure 13: Adaptive sync solution for frame tearing

Intel® Processor Graphics Gen11 Architecture 30

Intel® Processor Graphics Gen11 Architecture 31

6 MORE INFORMATION

 [Lake 2019] Adam Lake et al. Coarse Pixel Shading on Intel Graphics. To appear on Intel

Developer Zone.

[Vaidyanathan 2014] Karthik Vaidyanathan, Marco Salvi, Robert Toth, Tim Foley, Tomas

Akenine-Möller, Jim Nilsson, Jacob Munkberg, Jon Hasselgren, Masamichi Sugihara, Petrik

Clarberg, Tomasz Janczak, and Aaron Lefohn. 2014. Coarse Pixel Shading. In High-

Performance Graphics. 9–18.

Stephen Junkins 2015, “The Compute Architecture of Intel Processor Graphics Gen9”

7 NOTICES

Copyright © 20x19 Intel Corporation. All rights reserved

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is

granted by this document.

You may not use or facilitate the use of this document in connection with any infringement or

other legal analysis concerning Intel products described herein. You agree to grant Intel a

non-exclusive, royalty-free license to any patent claim thereafter drafted which includes

subject matter disclosed herein.

Intel disclaims all express and implied warranties, including without limitation, the implied

warranties of merchantability, fitness for a particular purpose, and non-infringement, as well

as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development.

All information provided here is subject to change without notice. Contact your Intel

representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may

cause deviations from published specifications. Current characterized errata are available on

request.

Copies of documents which have an order number and are referenced in this document may

be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-

Intel microprocessors for optimizations that are not unique to Intel microprocessors. These

optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel

does not guarantee the availability, functionality, or effectiveness of any optimization on

microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this

http://www.intel.com/design/literature.htm

Intel® Processor Graphics Gen11 Architecture 32

product are intended for use with Intel microprocessors. Certain optimizations not specific to

Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable

product User and Reference Guides for more information regarding the specific instruction

sets covered by this notice.

Software and workloads used in performance tests may have been optimized for performance

only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are

measured using specific computer systems, components, software, operations and functions.

Any change to any of those factors may cause the results to vary. You should consult other

information and performance tests to assist you in fully evaluating your contemplated

purchases, including the performance of that product when combined with other products.

For more information go to http://www.intel.com/performance.

Intel, the Intel logo, Iris™, Core™ are trademarks of Intel Corporation in the U.S. and/or other

countries.

*Other names and brands may be claimed as the property of others.

Intel® Graphics 4600, Iris™ Graphics, and Iris™ Pro Graphics are available on select systems.

Consult your system manufacturer. visit http://www.intel.com/content/www/us/en/architecture-and-

technology/microarchitecture/latest-microarchitecture.html

http://www.intel.com/performance
http://www.intel.com/performance
http://www.intel.com/performance
http://www.intel.com/content/www/us/en/architecture-and-technology/microarchitecture/latest-microarchitecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/microarchitecture/latest-microarchitecture.html

