BUILDING FASTER DATA APPLICATIONS ON SPARK* CLUSTERS USING INTEL® DAAL

Zhang Zhang
Developer Products Division
Agenda

Overview - Apache Spark™

What is Intel® DAAL?

Intel® DAAL in the context of Spark

Speeding up Spark MLlib with Intel® DAAL
 - Data conversion
 - Programming model of Intel® DAAL distributed processing
 - Example: PCA
 - Example: Linear regression

Performance

Future of Intel® DAAL
Overview of Apache Spark™

A fast and general engine for large-scale data processing*.

- Providing more operations than MapReduce
- Increasing developer productivity
- Running on Hadoop, Mesos, as a standalone, or in the cloud
- Fault-tolerant distributed data structures (RDD)
- A stack of powerful libraries

* Source: Apache Spark website (http://spark.apache.org)
Intel® Data Analytics Acceleration Library (Intel® DAAL)

An industry leading Intel® Architecture based data analytics acceleration library of fundamental algorithms covering all machine learning stages.

- (De-)Compression
 - PCA
 - Statistical moments
 - Variance matrix
 - QR, SVD, Cholesky
 - Apriori

- Transformation
 - Linear regression
 - Naive Bayes
 - SVM
 - Classifier boosting
 - Collaborative filtering
 - Neural Networks

- Analysis
 - Kmeans
 - EM GMM

- Modeling
 - Pre-processing
 - Transformation
 - Analysis
 - Modeling
 - Validation

- Decision Making
 - Scientific/Engineering
 - Web/Social
 - Business
What’s in the Package?

- Support IA-32 and Intel64 architectures
- Support Linux, Windows, and OS X*
- C++ and Java API. Python support is coming soon.
- Static and dynamic linking.
- A standalone library, and also bundled in Intel® Parallel Studio XE 2016.
- Also available as part of the **Intel Performance Libraries Community Edition** (free).
- An open source Intel DAAL will soon be available on Github.

Note: Bundled version is not available on OS* X.
Where Intel DAAL Fits?

- **Optimization Notice**
- **Limited performance**
 - Many layers of dependencies
 - Low ROI on HW investment

Big data frameworks: Hadoop, Spark, Cassandra, etc.

- **Spark**
- **MLLib**
- **Breeze**
- **Netlib-Java**
- **JVM**
- **JNI**
- **Netlib BLAS**

Connectors

- **All data sources**
 - Finance
 - Social media
 - CRM
 - Marketing
 - Sensors, devices
 - Ad campaigns
 - Manufacturing

- **SQL stores**
- **NoSQL stores**
- **In-memory stores**
Where Intel DAAL Fits?

Big data analytics

- Run on state-of-art hardware
- Single library to cover all stages of data analytics
- Fully optimized for underlying hardware

Optimized performance
Simpler development/deployment
High ROI on HW investment

Big data frameworks: Hadoop, Spark, Cassandra, etc.
Where Intel DAAL Fits?

Intel® Data Analytics Acceleration Library

- **Analysis**
 - PCA
 - Low order moments
 - Matrix factorization
 - Outlier detection
 - Distances
 - Association rules

- **Machine learning**
 - Regression
 - Linear regression
 - Classification
 - SVM
 - Naïve Bayes
 - Boosting algorithms
 - Recommendation
 - ALS
 - Clustering
 - K-Means
 - EM for GMM

- **Programming languages**
 - C++
 - Java

- **Processing modes**
 - Batch processing
 - Distributed processing
 - Online processing

- **Utilities**
 - Data compression
 - Serialization
 - Model import/output

- **Big data frameworks**: Hadoop, Spark, Cassandra, etc.

Intel DAAL fits in various domains such as:

- **All data sources**
 - Finance
 - Social media
 - CRM
 - Marketing
 - Sensors, devices
 - Ad campaigns
 - Manufacturing

- **SQL stores**
 - Connectors

- **In-memory stores**

- **Batch processing**
- **Distributed processing**
- **Online processing**
Intel® DAAL Distributed Processing

Conceptual Model

Master -> Partial results collection -> Local processing

Input -> Local processing

Partial result

Final result

Input

Partial result
Intel DAAL in the Context of Spark

SparkContext

- Driver Program
- Master
- Final result
- Partial results collection

Executor

- Input
- Local processing
- Partial result
- Final result

Worker Node

- Cluster Manager

Executor

- Input
- Local processing
- Partial result

Worker Node
Intel DAAL Numeric Tables

Heterogeneous – AOS
- Observations are stored in contiguous memory buffers.

Heterogeneous – SOA
- Features are stored in contiguous memory buffers.

Homogeneous – Dense matrix
- 2D matrix: n rows (observations), p columns (features)

Homogeneous – Sparse matrix (CSR)
- Support both 0-based indexing and 1-based indexing.

m-by-n homogenous

\[
\begin{bmatrix}
 x_{00} & x_{01} & \ldots & x_{0(n-1)} \\
 x_{10} & x_{11} & \ldots & x_{1(n-1)} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{m0} & x_{m1} & \ldots & x_{m(n-1)} \\
\end{bmatrix}
\]
Numeric Tables and RDD

JavaRDD<NumericTable>

```
public class NumericTableWithIndex implements java.io.Serializable {
    private Tuple2<Long, NumericTable> tup;
    private long nRows;
    private long nCols;
}
```
Handle MLlib Distributed Data Structures

JavaRDD<Vector>
RowMatrix

User-defined conversion methods

JavaRDD<NumericTable>
Data Conversion: RDD<Vector> to RDD<NumericTable>

JavaPairRDD<Vector, Long> vecrddWithIds = vecrdd.zipWithIndex();

JavaRDD<NumericTableWithIndex> jntrdd = vecrddWithIds.mapPartitions(
 new FlatMapFunction<Iterator<Tuple2<Vector, Long>>, NumericTableWithIndex>() {
 public List<NumericTableWithIndex> call(Iterator<Tuple2<Vector, Long>> it) {
 DalContext context = new DalContext();
 ArrayList<NumericTableWithIndex> tables = new ArrayList<NumericTableWithIndex>();
 int cursize = 0;
 int nrows = 0;
 double[] data = new double[0];
 while (it.hasNext()) {
 Tuple2<Vector, Long> tup = it.next();
 double[] row = tup._1().toArray();
 data = ArrayUtils.addAll(data, row);
 cursize += row.length;
 nrows++;
 if (nrows == maxRowsPerTable || !it.hasNext()) {
 NumericTableWithIndex part = new NumericTableWithIndex(
 tup._2() - nrows + 1,
 new HomogenNumericTable(context, data, cursize/nrows, nrows)).
 tables.add(part);
 cursize = 0;
 nrows = 0;
 }
 }
 return tables;
 }
 }.

return new DistributedNumericTable(jntrdd, vecrdd.count(), ncols);
Data Conversion: RDD<NumericTable> to RDD<Vector>

```java
return distNT.numTables.flatMap(
    new FlatMapFunction<NumericTableWithIndex, Vector>() {
        public List<Vector> call(NumericTableWithIndex nt) {
            DaalContext context = new DaalContext();
            NumericTable table = nt.getTable(context);
            double[] data = (table instanceof HomogenNumericTable) ? ((HomogenNumericTable) table).getDoubleArray() : null;
            if (data == null) {
                throw new IllegalArgumentException("Invalid NumericTable type");
            }
            long begin = 0;
            long end = nt.numOfCols();
            ArrayList<Vector> veclist = new ArrayList<Vector>();
            while (begin < data.length) {
                double[] row = ArrayUtils.subarray(data, (int)begin, (int)end);
                DenseVector dv = new DenseVector(row);
                veclist.add(dv);
                begin = end;
                end += nt.numOfCols();
            }
            context.dispose();
            return veclist;
        }
    });
```
Local processing algorithms abstractions:

- **Package:** com.intel.daal.algorithms
 - pca.DistributedStep1Local
 - linear_regression.Training.TrainingDistributedStep1Local
 - …

Partial results abstractions:

- pca.PartialResult
- linear_regression.Training.PartialResult
- …

For each `table` in `JavaRDD<NumericTable>`:

```java
// Local processing algorithm and params
DistributedStep1Local alg =
    new DistributedStep1Local(......);

// Set input
alg.input.set(Input.data, table);

// Compute and access partial result
PartialResult ret = alg.compute();
...
Programming Model of Distributed Processing

Master Side

Master side algorithms abstractions:

- **Package**: com.intel.daal.algorithms
  - pca.DistributedStep2Master
  - linear_regression.Training.TrainingDistributedStep2Master
  - …

Final results abstractions:

- pca.Result
- linear_regression.Training.TrainingResult
- …

```java
// Collect partial results from all slaves
List<PartialResult> partsList = parts.collect();

// Master side processing algorithms and params
DistributedStep2Master alg =
 new DistributedStep2Master(......);

// Set master side processing input
for (PartialResult val : partsList) {

 alg.input.add(MasterInputId.partialResults, val);
}

// Compute
alg.compute();

// Get final result
Result result = alg.finalizeCompute();
```
Example: Intel DAAL PCA on Spark

Intel DAAL provides two computation methods:
- Correlation method (*default*)
- SVD method

Input in the form of NumericTables:
- Non-normalized data, or
- Normalized data ($\mu = 0, \sigma = 1$), or
- Correlation matrix

Output:
- Scores (*A $1 \times p$ NumericTable* with eigenvalues, largest to smallest)
- Loadings (*A $p \times p$ NumericTable* with corresponding eigenvectors)
PCA - Slave Side

```java
final Broadcast<Tuple2<Class<? extends Number>, PCAMethod>> configBcast = sc.broadcast(config);
// Local processing on all slaves
JavaRDD<PartialResult> partsrdd = nTables.map(
 new Function<NumericTableWithIndex, PartialResult>() {
 public PartialResult call(NumericTableWithIndex table) {
 DaalContext context = new DaalContext();
 // Create algorithm to calculate PCA decomposition using Correlation method on local nodes
 DistributedStep1Local pcaLocal = new DistributedStep1Local(
 context,
 configBcast.value()._1(),
 configBcast.value()._2().getMethod());

 // Set input data on local node
 pcaLocal.input.set(InputId.data, table.getTable(context));

 // Compute PCA on local node
 PartialResult pres = pcaLocal.compute();
 pres.pack();
 context.dispose();
 return pres;
 }
 }).cache();
```
PCA – Master Side

```java
// Finalize on master
List<PartialResult> partsCollection = partsrdd.collect();
DistributedStep2Master pcaMaster = new DistributedStep2Master(dc, config._1(), config._2().getMethod());
for (PartialResult value : partsCollection) {
 value.unpack(dc);
 pcaMaster.input.add(MasterInputId.partialResults, value);
}
pcaMaster.compute();
Result daalresult = pcaMaster.finalizeCompute();

return new PCAResult(daalresult.get(ResultId.eigenValues),
 daalresult.get(ResultId.eigenVectors));
```
Example: Intel DAAL Linear Regression on Spark

Training – distributed processing

- Computation methods:
  - Normal equation method
  - QR method

- Input:
  - An \( nxp \) NumericTable of independent variables
  - An \( nxk \) NumericTable of corresponding known responses

- Output:
  - A Model object (the intercept, coefficients)

Prediction – batch processing, on master side only

- Input:
  - A Model
  - An \( mxp \) NumericTable of unseen data

- Output:
  - An \( mkx \) NumericTable of predicted responses
Training Data Representation

JavaPairRDD<
NumericTable, NumericTable>

Local

\[ \begin{align*}
\text{Independent variables} & \quad \text{Responses} \\
\end{align*} \]

Local

\[ \begin{align*}
\end{align*} \]

\[ \begin{align*}
\end{align*} \]
Linear Regression Model Training – Slave Side

```java
final Broadcast<Tuple2<Class<? extends Number>, Method>> config = sc.broadcast(trConfig);
// Local processing on all slaves
JavaRDD<PartialResult> partsrdd = dataWithLabels.map(
 new Function<Tuple2<NumericTable, NumericTable>, PartialResult>() {
 public PartialResult call(Tuple2<NumericTable, NumericTable> tup) {
 DaalContext context = new DaalContext();

 // Create algorithm to train a model
 TrainingDistributedStep1Local training = new TrainingDistributedStep1Local(
 context, config.value()._1(), config.value()._2().getMethod());
 // Set input data on local node
 tup._1().unpack(context);
 tup._2().unpack(context);
 training.input.set(TrainingInputId.data, tup._1());
 training.input.set(TrainingInputId.dependentVariable, tup._2());
 // Compute on local node
 PartialResult pres = training.compute();
 pres.pack();
 context.dispose();
 return pres;
 }
 });
).cache();
```
// Finalizing on master
List<PartialResult> partscollection = partsrdd.collect();
TrainingDistributedStep2Master master =
    new TrainingDistributedStep2Master(dc, trConfig._1(), trConfig._2().getMethod());
for (PartialResult value : partscollection) {
    value.unpack(dc);
    master.input.add(MasterInputId.partialModels, value);
}
master.compute();
TrainingResult result = master.finalizeCompute();
return result.get(TrainingResultId.model);
Linear Regression Prediction

```java
// Linear Regression prediction only works with batch mode.
// Prediction algorithm
PredictionBatch predict = new PredictionBatch(dc, predictFpType, predictMethod);
// Set input
predict.input.set(PredictionInputId.data, testData);
// Set model
predict.input.set(PredictionInputId.model, model);
return predict.compute();
```
PCA Performance Boosts Using Intel® DAAL vs. Spark* MLLib on Intel® Architectures

PCA (correlation method) on an 8-node Hadoop* cluster based on Intel® Xeon® Processors E5-2699 v3

Table size

<table>
<thead>
<tr>
<th>Table size</th>
<th>1M x 200</th>
<th>1M x 400</th>
<th>1M x 600</th>
<th>1M x 800</th>
<th>1M x 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speedup</td>
<td>4X</td>
<td>6X</td>
<td>6X</td>
<td>7X</td>
<td>7X</td>
</tr>
</tbody>
</table>

Configuration Info - Versions: Intel® Data Analytics Acceleration Library 2016, CDH v5.3.1, Apache Spark* v1.2.0; Hardware: Intel® Xeon® Processor E5-2699 v3, 2 Eighteen-core CPUs (45MB LLC, 2.3GHz), 128GB of RAM per node; Operating System: CentOS 6.6 x86_64.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. *Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804.
DAAL 2017 Key New Features

Neural Networks

Python API (a.k.a. PyDAAL)

Open source project on Github

Join the Beta program today
https://softwareproductsurvey.intel.com/f/150587/1103/
## Intel® DAAL Neural Networks Components

### Layers

<table>
<thead>
<tr>
<th>Common layers</th>
<th>Activation</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolutional</td>
<td>Logistic</td>
<td>Z-score</td>
</tr>
<tr>
<td>Pooling (max, average, stochastic, spatial)</td>
<td>Hyperbolic tangent</td>
<td>Batch</td>
</tr>
<tr>
<td>Fully connected</td>
<td>ReLU, pReLU, soft ReLU</td>
<td>Local response</td>
</tr>
<tr>
<td>Locally connected</td>
<td>Softmax</td>
<td>Local contrast</td>
</tr>
<tr>
<td>Dropout</td>
<td>Abs</td>
<td></td>
</tr>
</tbody>
</table>

### Optimization solvers

**Supported objective functions**
- MSE (mean squared errors)

**Supported solvers**
- SGD
- Mini-batch gradient descent
- Stochastic LBFGS
- Adagrad
Python API (a.k.a. PyDAAL)

Stick closely with DAAL’s overall design
  - Object-oriented, namespace hierarchy, plug&play

Seamless interfacing with NumPy Anaconda package
  - http://anaconda.org/intel/

```python
...
Create a Numpy array as our input
a = np.array([[1,2,4],
 [2,1,23],
 [4,23,1]])

create a DAAL Matrix using our numpy array
m = daal.Matrix(a)

Create algorithm objects for cholesky decomposition computing using default method
algorithm = cholesky.Batch()

Set input arguments of the algorithm
algorithm.input.set(cholesky.data, m)

Compute Cholesky decomposition
res = algorithm.compute()

Get computed Cholesky decomposition
tbl = res.get(choleskyFactor)

get and print the numpy array
print tbl.getArray()
```
Open Source Project

Co-exists with the proprietary version

Apache 2.0 license

Lives on github.com
Resources

Product Links

- Intel® Data Analytics Acceleration Library
- User forum
- Community licensing program
  - https://software.intel.com/sites/campaigns/nest

Code Modernization Links

- Modern Code Developer Community
  - software.intel.com/modern-code
- Intel Code Modernization Enablement Program
  - software.intel.com/code-modernization-enablement
- Intel Parallel Computing Centers
  - software.intel.com/ipcc
- Technical Webinar Series Registration
- Intel Parallel Universe Magazine
  - software.intel.com/intel-parallel-universe-magazine
Call to Action

Download the code samples and try it out on your Spark cluster


Join the 2017 Beta program

- Intel DAAL is part of Intel Parallel Studio XE 2017 Beta
- Registration link
Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804
Intel DAAL Processing modes

**Batch Processing**

\[ R = F(D_1, \ldots, D_k) \]

**Online Processing**

\[ S_{i+1} = T(S_i, D_i) \]
\[ R_{i+1} = F(S_{i+1}) \]

**Distributed Processing**

\[ R = F(D_1, \ldots, D_k) \]
\[ R = F(R_1, \ldots, R_k) \]
<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Batch</th>
<th>Distributed</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Descriptive statistics</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low order moments</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Quantiles</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Statistical relationships</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation / Variance-Covariance</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(Cosine, Correlation) distance matrices</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Matrix decomposition</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVD</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cholesky decomposition</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QR decomposition</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td><strong>Regression</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear regression</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td><strong>Classification</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SVM (two-class and multi-class)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boosting</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Unsupervised learning</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Association rules mining</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anomaly detection</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>KMeans</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>EM for GMM</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Recommender systems</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALS</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td><strong>Deep learning</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neural networks</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>