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Notices and Disclaimers 
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted 

by this document. 

This document contains information on products, services and/or processes in development. All 

information provided here is subject to change without notice. Contact your Intel representative to 

obtain the latest forecast, schedule, specifications and roadmaps. 

Intel technologies' features and benefits depend on system configuration and may require enabled 

hardware, software or service activation. Performance varies depending on system configuration. No 

product or component can be absolutely secure. Check with your system manufacturer or retailer or 

learn more at [intel.com].  

The products and services described may contain defects or errors which may cause deviations from 

published specifications. Current characterized errata are available on request. Intel disclaims all 

express and implied warranties, including without limitation, the implied warranties of merchantability, 

fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of 

performance, course of dealing, or usage in trade. 

Intel, the Intel logo, Intel Atom, Intel Arria, Intel Core, VTune and Xeon are trademarks of Intel 

Corporation in the U.S. and/or other countries. 

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft 

Corporation in the United States and/or other countries. 

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of The Khronos Group. 

*Other names and brands may be claimed as the property of others. 

© Intel Corporation. 

This software and the related documents are Intel copyrighted materials, and your use of them is 

governed by the express license under which they were provided to you ("License"). Unless the License 

provides otherwise, you may not use, modify, copy, publish, distribute, disclose or transmit this software 

or the related documents without Intel's prior written permission. 

This software and the related documents are provided as is, with no express or implied warranties, 

other than those that are expressly stated in the License. 

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel 

microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations 

include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the 

availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by 

Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel 

microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel 

microprocessors. Please refer to the applicable product User and Reference Guides for more 

information regarding the specific instruction sets covered by this notice. Notice Revision #20110804 

Unless stated otherwise, the code examples in this document are provided to you under an MIT license, 

the terms of which are as follows: 

Copyright 2019 Intel Corporation  
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Permission is hereby granted, free of charge, to any person obtaining a copy of this software and 

associated documentation files (the "Software"), to deal in the Software without restriction, including 

without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 

copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to 

the following conditions: 

The above copyright notice and this permission notice shall be included in all copies or substantial 

portions of the Software. 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT 

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF 

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
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1 Introduction 
Obtaining high compute performance on today’s modern computer architectures requires code that is 

optimized, power efficient, and scalable. The demand for high performance continues to increase due 

to needs in AI, video analytics, data analytics, as well as in traditional high performance computing 

(HPC). 

Modern workload diversity has resulted in a need for architectural diversity; no single architecture is 

best for every workload. A mix of scalar, vector, matrix, and spatial (SVMS) architectures deployed in 

CPU, GPU, AI, and FPGA accelerators is required to extract the needed performance.  

Today, coding for CPUs and accelerators requires different languages, libraries, and tools.  That means 

each hardware platform requires completely separate software investments and provides limited 

application code reusability across different target architectures.  

The oneAPI programming model simplifies the programming of CPUs and accelerators using modern 

C++ features to express parallelism with a programming language called Data Parallel C++ (DPC++). The 

DPC++ language enables code reuse for the host (such as a CPU) and accelerators (such as a GPU) using 

a single source language, with execution and memory dependencies clearly communicated. Mapping 

within the DPC++ code can be used to transition the application to run on the hardware, or set of 

hardware, that best accelerates the workload. A host is available to simplify development and 

debugging of device code, even on platforms that do not have an accelerator available. 

NOTE: Not all programs can benefit from the single programming model offered by oneAPI. It is important to 

understand if your program can benefit and how to design, implement, and use the model for your 

program.  

1.1 oneAPI Programming Model Overview 
The oneAPI programming model provides a comprehensive and unified portfolio of developer tools 

that can be used across hardware targets, including a range of performance libraries spanning several 

workload domains. The libraries include functions custom-coded for each target architecture, so the 

same function call delivers optimized performance across supported architectures. DPC++ is based on 

industry standards and open specifications to encourage ecosystem collaboration and innovation. 



 

Introduction 

    9 

 

As shown in the figure above, applications that take advantage of the oneAPI programming model can 

execute on multiple target hardware platforms ranging from CPU to FPGA. The oneAPI product is 

comprised of the Intel® oneAPI Base Toolkit and several add-on toolkits featuring complementary tools 

based on specific developer workload needs. The Intel oneAPI Base Toolkit includes the Intel® oneAPI 

DPC++ Compiler, the Intel® DPC++ Compatibility Tool, select libraries, and analysis tools.  

• Developers who want to migrate existing CUDA* code to DPC++, can use the Intel DPC++ 

Compatibility Tool to help migrate their existing projects to DPC++.  

• The Intel oneAPI DPC++ Compiler supports direct programming of code targeting accelerators. 

Direct programming is coding for performance when APIs are not available. It supports online and 

offline compilation for CPU and GPU targets and offline compilation for FPGA targets.  

• API-based programming is supported via sets of optimized libraries. The library functions provided 

in the oneAPI product are pre-tuned for use with any supported target architecture, eliminating the 

need for developer intervention. For example, the BLAS routine available from Intel oneAPI Math 

Kernel Library is just as optimized for a GPU target as a CPU target.  

• Finally, the compiled DPC++ application can be analyzed and debugged to ensure performance, 

stability, and energy efficiency goals are achieved using tools such as Intel® VTune™ Profiler or 

Intel® Advisor.  

1.1.1 Data Parallel C++ (DPC++) 
Data Parallel C++ (DPC++) is a high-level language designed for data parallel programming productivity. 

It is based on C++ for broad compatibility and uses common, familiar C and C++ constructs. The 
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language seeks to deliver performance on par with other compiled languages, such as standard C++ 

compiled code, and uses C++ class libraries to allow the compiler to interpret the code and run on 

various supported architectures.  

DPC++ is based on SYCL* from the Khronos* Group to support data parallelism and heterogeneous 

programming. In addition, Intel is pursuing extensions to SYCL with the aim of providing value to 

customer code and working with the standards organization for adoption. For instance, the DPC++ 

language includes an implementation of unified shared memory to ease memory usage between the 

host and the accelerators. These features are being driven into a future version of the SYCL language. 

For more details about SYCL, refer to version 1.2.1 of the SYCL Specification. 

While DPC++ applications can run on any supported target hardware, tuning is required to gain the best 

performance advantage on a given target architecture. For example, code tuned for a CPU likely will not 

run as fast on a GPU accelerator without modification. This guide aims to help developers understand 

how to program using the oneAPI programming model and how to target and optimize for the 

appropriate architecture to achieve optimal application performance.  

1.1.2 oneAPI Toolkit Distribution 
oneAPI Toolkits are available via multiple distribution channels:  

• Local product installation: install the oneAPI toolkits from the Intel® Developer Zone.   

• Install from containers or repositories: install the oneAPI toolkits from one of several supported 

containers or repositories. 

• Pre-installed in the Intel® DevCloud: use a free development sandbox for access to the latest Intel 

SVMS hardware and select oneAPI tools.  

1.2 About This Guide 
This document provides:  

• Chapter 2: An introduction to the oneAPI programming model (platform, execution, memory, 

and kernel programming) 

• Chapter 3: Details about how to compile code for various accelerators (CPU, FPGA, etc.)  

• Chapter 4: A description of the programming model with specifics about the Data Parallel C++ 

(DPC++) language options 

• Chapter 5: A brief introduction to common APIs and related libraries  

• Chapter 6: An overview of the software development process using various oneAPI tools, such 

as debuggers and performance analyzers, and optimizing code for a specific accelerator (CPU, 

FPGA, etc.) 

https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
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1.3 Related Documentation 
The following documents are useful starting points for developers getting started with oneAPI projects. 

This document assumes you already have a basic understanding of the oneAPI programming model 

concepts.  

Get Started with oneAPI for Linux* 

Get Started with oneAPI for Windows* 

oneAPI Release Notes 

SYCL* Specification (for version 1.2.1) 

https://software.intel.com/en-us/get-started-with-intel-oneapi-linux
https://software.intel.com/en-us/get-started-with-intel-oneapi-windows
https://software.intel.com/en-us/articles/intel-oneapi-release-notes
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
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2  oneAPI Programming Model 
The oneAPI programming model is based upon the SYCL* Specification. The specification presents a 

general heterogeneous compute capability by detailing four models. These models categorize the 

actions a developer needs to perform to employ one or more devices as an accelerator.  Aspects of 

these models appear in every program that employs the oneAPI programming model. These models 

are summarized as: 

• Platform model - Specifies the host and device(s). 

• Execution model - Specifies the command queues and issuing commands for execution on the 

device(s). 

• Memory model - Defines how the host and devices interact with memory.  

• Kernel model - Defines the code that executes on the device(s). This code is known as the kernel. 

The programming language for oneAPI is Data Parallel C++ (DPC++) and employs modern features of 

the C++ language to enact its parallelism. In fact, when writing programs that employ the oneAPI 

programming model, the programmer routinely uses language features such as C++ lambdas, 

templates, parallel_for, and closures.  

TIP: If you are unfamiliar with these C++11 and later language features, consult other C++ language 

references and gain a basic understanding before continuing.  

When evaluating and learning oneAPI, keep in mind that the programming model is general enough to 

accommodate multiple classes of accelerators; therefore, there may be a greater number of API calls 

required to access the accelerators than more constrained APIs, such as those only accessing one type 

of accelerator. 

One of the primary motivations for DPC++ is to provide a higher-level programming language than 

OpenCL™ C code, which it is based upon. Readers familiar with OpenCL programs will see many 

similarities to and differences from OpenCL code. This chapter points out similarities and differences 

where appropriate. This chapter also points to portions of the SYCL Specification for further 

information.  

2.1 Sample Program 
The following code sample contains a program that employs the oneAPI programming model to 

compute a vector addition. The program computes the formula c = a + b across arrays, a and b, each 

containing 1024 elements, and places the result in array c. The following discussion focusses on 

sections of code identified by line number in the sample. The intent with this discussion is to highlight 

the required functionality inherent when employing the programming model.  

NOTE: Keep in mind that this sample code is intended to illustrate the four models that comprise the oneAPI 

programming model; it is not intended to be a typical program or the simplest in nature.  

1  #include <vector> 

2  #include <CL/sycl.hpp> 

3   

https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
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4  #define SIZE 1024 

5   

6  namespace sycl = cl::sycl; 

7   

8  int main() { 

9    std::array<int, SIZE> a, b, c; 

10   

11    for (int i = 0; i<SIZE; ++i) { 

12      a[i] = i; 

13      b[i] = -i; 

14      c[i] = i; 

15    } 

16   

17    { 

18    sycl::range<1> a_size{SIZE}; 

19   

20    auto platforms = sycl::platform::get_platforms(); 

21   

22    for (auto &platform : platforms) { 

23   

24      std::cout << "Platform: " 

25        << platform.get_info<sycl::info::platform::name>() 

26        << std::endl; 

27   

28   

29      auto devices = platform.get_devices(); 

30      for (auto &device : devices ) { 

31        std::cout << "  Device: " 

32          << device.get_info<sycl::info::device::name>() 

33          << std::endl; 

34      } 

35   

36    } 

37   

38    sycl::default_selector device_selector; 

39    sycl::queue d_queue(device_selector); 

40   

41    sycl::buffer<int, 1>  a_device(a.data(), a_size); 

42    sycl::buffer<int, 1>  b_device(b.data(), a_size); 

43    sycl::buffer<int, 1>  c_device(c.data(), a_size); 

44   

45    d_queue.submit([&](sycl::handler &cgh) { 

46      auto c_res = 

c_device.get_access<sycl::access::mode::write>(cgh); 

47      auto a_in = 

a_device.get_access<sycl::access::mode::read>(cgh); 
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48      auto b_in = 

b_device.get_access<sycl::access::mode::read>(cgh); 

49   

50      cgh.parallel_for<class ex1>(a_size,[=](sycl::id<1> idx) { 

51        c_res[idx] = a_in[idx] + b_in[idx]; 

52      }); 

53   

54    }); 

55   

56    } 

57  } 

 

A DPC++ program has the single source property, which means the host code and the device code can 

be placed in the same file so that the compiler treats them as the same compilation unit. This can 

potentially result in performance optimizations across the boundary between host and device code. 

The single source property differs from a programming model like OpenCL software technology where 

the host code and device code are typically in different files, and the host and device compiler are 

different entities, which means no optimization can occur between the host and device code boundary. 

Therefore, when scrutinizing a DPC++ program, the first step is to understand the delineation between 

host code and device code. To be more specific, DPC++ programs are delineated into different scopes 

similar to programming language scope, which is typically expressed via { and } in many languages.  

The three types of scope in a DPC++ program include: 

• Application scope – Code that executes on the host 

• Command group scope – Code that acts as the interface between the host and device 

• Kernel scope – Code that executes on the device 

In this example, command group scope comprises lines 45 through 54 and includes coordination and 

data passing operations required in the program to enact control and communication between the host 

and the device.   

 

Kernel scope, which is nested in the command group scope, comprises lines 50 to 52. Application scope 

consists of all the other lines not in command group or kernel scope. Syntactically, definitions are 

included from the top level include file; sycl.hpp and namespace declarations can be added for 

convenience.   
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The function of each of the lines and its classification into one of the four models are detailed as 

follows:  

• Lines 2 and 6 – include and namespace – programs employing the oneAPI programming model 

require the include of cl/sycl.hpp. It is recommended to employ the namespace statement at 

line 6 to save typing repeated references into the cl::sycl namespace.  

 
• Lines 20 to 36 – Platform model – programs employing the oneAPI programming model can query 

the host for available platforms and can either select one to employ for execution or allow the 

oneAPI runtime to choose a default platform. A platform defines the relationship between the host 

and device(s). The platform may have a number of devices associated with it and a program can 

specify which device(s) to employ for execution or allow the oneAPI runtime to choose a default 

device.  

 
• Lines 39 and 45 – Execution model – programs employing the oneAPI programming model define 

command queues that issue command groups. The command groups control execution on the 

device.  
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• Lines 41 to 43 and lines 46 to 48 – Memory model – programs employing the oneAPI programming 

model may use buffers and accessors to manage memory access between the host and devices. In 

this example, the arrays, a, b, and c are defined and allocated on the host. Buffers, a_device, 

b_device, and c_device, are declared to hold the values from a, b, and c respectively so the 

device can compute the vector addition. The accessors, a_in and b_in, denote that a_device and 

b_device are to have read only access on the device. The accessor c_res denotes that c_device 

is to allow write access from the device.  

 
• Line 50 to 52 – Kernel Programming Model – The C++ language parallel_for statement denotes 

that the code enclosed in its scope will execute in parallel across the compute elements of the 

device. This example code employs a C++ lambda to represent the kernel. 

 
• Line 17 and 56 – Scope and Synchronization – Memory operations between the buffers and actual 

host memory execute in an asynchronous fashion. To ensure synchronization, the command queue 

is placed inside another scope at line 17 and 56 which tells the runtime to synchronize before the 

scope is exited as part of the buffer’s destructors being executed. This practice is used in many 

programs. 

When compiled and executed, the sample program computes the 1024 element vector add in parallel 

on the accelerator. This assumes the accelerator has multiple compute elements capable of executing 

in parallel. This sample illustrates the models that the software developer will need to employ in their 

program. The next sections discuss in more details those four models: the Platform model, the 

Execution model, the Memory model, and the Kernel model. 

2.2 Platform Model  
The platform model for oneAPI is based upon the SYCL* platform model. It specifies a host controlling 

one or more devices. A host is the computer, typically a CPU-based system executing the primary 

portion of a program, specifically the application scope and the command group scope. The host 

coordinates and controls the compute work that is performed on the devices. A device is an accelerator, 

a specialized component containing compute resources that can quickly execute a subset of operations 

typically more efficiently than the CPUs in the system. Each device contains one or more compute units 

that can execute several operations in parallel. Each compute unit contains one or more processing 

elements that serve as the individual engine for computation. 

A system can instantiate and execute several platforms simultaneously, which is desirable because a 

particular platform may only target a subset of the available hardware resources on a system. However, 
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in the typical case, a system will have one platform comprised of one or more supported devices, and 

the compute resources made available by those devices. 

The following figure provides a visual depiction of the relationships in the platform model. One host 

communicates with one or more devices. Each device can contain one or more compute units. Each 

compute unit can contain one or more processing elements.  

 

 

The platform model is general enough to be mapped to several different types of devices and lends to 

the functional portability of the programming model. The hierarchy on the device is also general and 

can be mapped to several different types of accelerators from FPGAs to GPUs and ASICs as long as 

these devices support the minimal requirements of the oneAPI programming model. Consult the 

oneAPI Release Notes for more information.  

https://software.intel.com/en-us/articles/intel-oneapi-release-notes
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2.3 Execution Model 
The execution model is based upon the SYCL* execution model. It defines and specifies how code, 

termed kernels, execute on the host and the devices.  

The host execution model coordinates execution and data management between the host and devices 

via command groups. The command groups, which are groupings of commands like kernel invocation 

and accessors, are submitted to queues for execution. Accessors, which are formally part of the memory 

model, also communicate ordering requirements of execution. A program employing the execution 

model declares and instantiates queues. Queues can execute with an in-order or out-of-order policy 

controllable by the program. In-order execution is an Intel extension. 

The device execution model specifies how computation is accomplished on the accelerator. Compute 

ranging from small one-dimensional data to large multidimensional data sets are allocated across a 

hierarchy of ND-ranges, work-groups, sub-groups (Intel extension), and work-items, which are all 

specified when the work is submitted to the command queue. It is important to note that the actual 

kernel code represents the work that is executed for one work-item. The code outside of the kernel 

controls just how much parallelism is executed; the amount and distribution of the work is controlled by 

specification of the sizes of the ND-range and work-group.  

The following figure depicts the relationship between an ND-range, work-group, sub-group, and work-

item. The total amount of work is specified by the ND-range size. The grouping of the work is specified 

by the work-group size. The example shows the ND-range size of X * Y * Z, work-group size of X’ * Y’ * Z’, 

and subgroup size of X’.  Therefore, there are X * Y * Z work-items. There are (X * Y * Z) /  (X * Y * Z) / (X’ * 

Y’ * Z’) work-groups and (X * Y * Z) / X’ subgroups.  
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When kernels are executed, the location of a particular work-item in the larger ND-range, work-group, 

or sub-group is important. For example, if the work-item is assigned to compute on specific pieces of 

data, a method of specification is necessary.  Unique identification of the work-item is provided via 

intrinsic functions such as those in the nd_item class (global_id, work_group_id, and local_id). 

The following code sample launches a kernel and displays the relationships of the previously discussed 

ND-range, work-group, and work-item.    

1  #include<CL/sycl.hpp> 

2  #include<iostream> 

3  #define N 6 

4  #define M 2 

5  using namespace cl::sycl; 

6  int main() 

7  { 

8     queue defaultqueue; 

9     buffer<int,2> buf(range<2>(N,N)); 

10   defaultqueue.submit([&](handler &cgh){ 

11     auto bufacc = buf.get_access<access::mode::read_write>(cgh); 
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12     cgh.parallel_for<class ndim>(nd_range<2>(range<2>(N,N), 

13       range<2>(M,M)), [=](nd_item<2> i){ 

14       id<2> ind = i.get_global_id(); 

15       bufacc[ind[0]][ind[1]] = ind[0]+ind[1]; 

16     }); 

17   }); 

18   auto bufacc1 = buf.get_access<access::mode::read>(); 

19   for(int i = 0; i < N; i++){ 

20     for(int j = 0; j < N; j++) 

21       std::cout<<bufacc1[i][j]<<"\t"; 

22     std::cout<<"\n"; 

23   } 

24   return 0; 

25 } 

ND-Range Parallelism Example 

The following discusses the relationships in the use of the ND-range in the previous code sample. 

• At line 12 is the nd-range declaration. nd_range<2> specifies a two-dimensional index space.  

• The global range is specified by the first argument, range<2>(N,N), which specifies the overall 

index space as 2 dimensions with size N by N.  

• The second argument, range<2>(M,M) specifies the local work-group range as 2 dimensions with 

size M by M.   

• Line 13 employs nd_item<2> to reference each work-item in the ND-range, and calls 

get_global_id to determine the index in the global buffer, bufacc.   

The sub-group is an extension to the SYCL execution model and sits hierarchically between the 

work_group and work_item. The sub_group was created to align with typical hardware resources 

that contain a vector unit to execute several similar operations in parallel and in lock step.   

2.4 Memory Model 
The memory model for oneAPI is based upon the SYCL* memory model. It defines how the host and 

devices interact with memory. It coordinates the allocation and management of memory between the 

host and devices. The memory model is an abstraction that aims to generalize across and be adaptable 

to the different possible host and device configurations. In this model, memory resides upon and is 

owned by either the host or the device and is specified by declaring a memory object. There are two 

different types of memory objects, buffers and images. Interaction of these memory objects between 

the host and device is accomplished via an accessor, which communicates the desired location of 

access, such as host or device, and the particular mode of access, such as read or write.  

Consider a case where memory is allocated on the host through a traditional malloc call. Once the 

memory is allocated on the host, a buffer object is created, which enables the host allocated memory to 

be communicated to the device. The buffer class communicates the type and number of items of that 

type to be communicated to the device for computation. Once a buffer is created on the host, the type 

of access allowed on the device is communicated via an accessor object, which specifies the type of 

access to the buffer. The general steps are summarized as: 
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1. Instantiate a buffer or image object.  

The host or device memory for the buffer or image is allocated as part of the instantiation or is 

wrapped around previously allocated memory on the host. 

2. Instantiate an accessor object.  

The accessor specifies the required location of access, such as host or device, and the particular 

mode of access, such as read or write. It represents dependencies between uses of memory objects.    

The following code sample is exercising different memory objects and accessors. 

1 #include <vector> 

2 #include <CL/sycl.hpp> 

3 namespace sycl = cl::sycl; 

4  

5 #define SIZE 64 

6  

7 int main() { 

8   std::array<int, SIZE> a, c; 

9   std::array<sycl::float4, SIZE> b; 

10   for (int i = 0; i<SIZE; ++i) { 

11     a[i] = i; 

12     b[i] = (float)-i; 

13     c[i] = i; 

14   } 

15  

16   { 

17   sycl::range<1> a_size{SIZE}; 

18  

19   sycl::queue d_queue; 

20  

21   sycl::buffer<int>  a_device(a.data(), a_size); 

22   sycl::buffer<int>  c_device(c.data(), a_size); 

23   sycl::image<2>  

b_device(b.data(),sycl::image_channel_order::rgba, 

24     sycl::image_channel_type::fp32, sycl::range<2>(8, 8)); 

25  

26   d_queue.submit([&](sycl::handler &cgh) { 

27     sycl::accessor<int, 1, sycl::access::mode::discard_write, 

28       sycl::access::target::global_buffer> c_res(c_device, cgh); 

29     sycl::accessor<int, 1, sycl::access::mode::read, 

30       sycl::access::target::constant_buffer> a_res(a_device, cgh); 

31     sycl::accessor<sycl::float4, 2, sycl::access::mode::write, 

32       sycl::access::target::image> b_res(b_device, cgh); 

33  

34     sycl::float4 init = {0.f, 0.f, 0.f, 0.f}; 

35  

36     cgh.parallel_for<class ex1>(a_size,[=](sycl::id<1> idx) { 
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37       c_res[idx] = a_res[idx]; 

38       b_res.write(sycl::int2(0,0), init); 

39     }); 

40  

41   }); 

42  

43   } 

44   return 0; 

45 }  

• Lines 8 and 9 contain the host allocations of arrays a, b, & c. The declaration of b is as a float4 

because it will be accessed as an image on the device side. 

• Lines 27 and 28 create an accessor for c_device that has an access mode of discard_write and 

a target of global_buffer. 

• Lines 29 and 30 create an accessor for a_device that has an access mode of read and a target of 

constant_buffer. 

• Lines 31 and 32 create an accessor for b_device that has an access mode of write and a target of 

image. 

The accessors specify where and how the kernel will access these memory objects. The runtime is 

responsible for placing the memory objects in the correct location. Therefore, the runtime may copy 

data between host and device to meet the semantics of the accessor target.  

Designate accessor targets to optimize the locality of access for a particular algorithm. For example, 

specify that local memory should be employed if much of the kernel access would benefit from 

memory that resides closer to the processing elements.  

If the kernel attempts to violate the communicated accessor by either attempting to write on a read 

accessor or read on a write accessor, a compiler diagnostic is emitted. Not all combinations of access 

targets and access modes are compatible. For details, see the SYCL Specification. 

2.4.1 Memory Objects 
Memory objects are either buffers or images.  

• Buffer object - a one-, two-, or three-dimensional array of elements. Buffers can be accessed via 

lower level C++ pointer types. For further information on buffers, see the SYCL Specification. 

• Image object - a formatted opaque memory object stored in a type specific and optimized fashion. 

Access occurs through built-in functions. Image objects typically pertain to pictures comprised of 

pixels stored in a format such as RGB (red, green, blue intensity).  For further information on images, 

see the SYCL Specification. 

2.4.2 Accessors 
Accessors provide access to buffers and images in the host or inside the kernel and also communicate 

data dependencies between the application and different kernels. The accessor communicates the data 

type, the size, the target, and the access mode. To enable good performance, pay particular attention to 

the target because the accessor specifies the memory type from the choices in the SYCL memory 

model.  
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The targets associated with buffers are:  

• global_buffer  

• host_buffer  

• constant_buffer  

• local   

The targets associated with images are:  

• image  

• host_image  

• image_array  

Image access must also specify a channel order to communicate the format of the data being read. For 

example, an image may be specified as a float4, but accessed with a channel order of RGBA.   

The access mode impacts correctness as well as performance and is one of read, write, read_write, 

discard_write, discard_read_write, or atomic. Mismatches in access mode and actual memory 

operations such as a write to a buffer with access mode read can result in compiler diagnostics as 

well as erroneous program state. The discard_write and discard_read_write access modes can 

provide performance benefits for some implementations. For further details on accessors, see the SYCL 

Specification. 

2.4.3 Synchronization 
It is possible to access a buffer without employing an accessor, however it should be the rare case. 

To do so safely, a mutex_class should be passed when a buffer is instantiated. For further details on 

this method, see the SYCL Specification. 

Access targets 

Target Description 

host_buffer Access the buffer on the host. 

global_buffer Access the buffer through global memory on the 

device.  

constant_buffer Access the buffer from constant memory on the 

device. This may enable some optimization. 

local  Access the buffer from local memory on the 

device.  

image Access the image 

image_array Access an array of images 

host_image  Access the image on the host. 
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Access modes 

Memory Access Mode Description 

read Read-only 

write Write-only 

read_write Read and write 

discard_write Write-only access. Previous value is discarded 

discard_read_write Read and write. Previous value is discarded 

atomic Provide atomic, one at a time, access. 

2.4.4 Unified Shared Memory 
An extension to the standard SYCL memory model is unified shared memory, which enables the sharing 

of memory between the host and device without explicit accessors in the source code. Instead, manage 

access and enforces dependences with explicit functions to wait on events or signaling a depends_on 

relationship between events.  

Another characteristic of unified shared memory is that it provides a C++ pointer-based alternative to 

the buffer programming model. Unified shared memory provides both explicit and implicit models for 

managing memory. In the explicit model, programmers are responsible for specifying when data should 

be copied between memory allocations on the host and allocations on a device. In the implicit model, 

the underlying runtime and device drivers are responsible for automatically migrating memory between 

the host and a device. Since unified shared memory does not rely on accessors, dependences between 

operations must be specified using events. Programmers may either explicitly wait on event objects or 

use the depends_on method inside a command group to specify a list of events that must complete 

before a task may begin. 

2.5 Kernel Programming Model 
The kernel programming model for oneAPI is based upon the SYCL* kernel programming model. It 

enables explicit parallelism between the host and device. The parallelism is explicit in the sense that the 

programmer determines what code executes on the host and device; it is not automatic. The kernel 

code executes on the accelerator. Programs employing the oneAPI programming model support single 

source, meaning the host code and device code can be in the same source file. However, there are 

differences between the source code accepted in the host code and the device code with respect to 

language conformance and language features. The SYCL Specification defines in detail the required 

language features for host code and device code. The following is a summary that is specific to the 

oneAPI product. 
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2.5.1 C++ Language Requirements 
The host code can be compiled by C++11 and later compilers and take advantage of supported C++11 

and later language features. The device code requires a compiler that accepts all C++03 language 

features and the following C++11 features: 

• Lamdba expressions 

• Variadic templates 

• Alias templates 

• rvalue references 

• std::function, std::string, std::vector 

In addition, the device code cannot use the following features: 

• Virtual Functions 

• Virtual Inheritance 

• Exceptions handling – throws and catches between host and device 

• Run Time Type Information (RTTI) 

• Object management employing new and delete operators 

 

The device code is specified via one of three language constructs: lambda expression, functor, or kernel 

class. The separation of host code and device code via these language constructs is natural and 

accomplished without language extensions. These different forms of expressing kernels give the 

developer flexibility in enmeshing the host code and device code. For example:  

• To put the kernel code in line with the host code, consider employing a lambda expression.  

• To have the device code separate from the host code, but still maintain the single source property, 

consider employing a functor.  

• To port code from OpenCL programs or to ensure a more rigid separation between host and device 

code, consider employing the kernel class. 

The Device code inside a lambda expression, functor, or kernel object can then specify the amount of 

parallelism to request through several mechanisms.  

• single_task – execute a single instance of the kernel with a single work item. 

• parallel_for – execute a kernel in parallel across a range of processing elements. Typically, this 

version of parallel_for is employed on “embarrassingly parallel” workloads. 

• parallel_for_work_group – execute a kernel in parallel across a hierarchical range of processing 

elements using local memory and barriers. 

The following code sample shows two combinations of invoking kernels:  

1. single_task and C++ lambda (lines 33-40)  

2. parallel_for and functor (lines 8-20 and line 50)  

These constructs enclose the aforementioned kernel scope. For details, see the SYCL Specification. 

1  #include <vector> 

2  #include <CL/sycl.hpp> 

3   

4  #define SIZE 1024 

5   

6  namespace sycl = cl::sycl; 
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7   

8  template <typename T> class Vassign { 

9    T val; 

10    sycl::accessor<T, 1, sycl::access::mode::read_write, 

11                   sycl::access::target::global_buffer> access; 

12   

13  public: 

14    Vassign(T val_, sycl::accessor<T, 1, 

sycl::access::mode::read_write, 

15            sycl::access::target::global_buffer> &access_) : 

val(val_), 

16            access(access_) {} 

17   

18    void operator()(sycl::id<1> id) { access[id] = 1; } 

19   

20  }; 

21   

22  int main() { 

23    std::array<int, SIZE> a; 

24   

25    for (int i = 0; i<SIZE; ++i) { 

26      a[i] = i; 

27    } 

28    { 

29    sycl::range<1> a_size{SIZE}; 

30    sycl::buffer<int, 1>  a_device(a.data(), a_size); 

31    sycl::queue d_queue; 

32   

33    d_queue.submit([&](sycl::handler &cgh) { 

34      auto a_in = 

a_device.get_access<sycl::access::mode::write>(cgh); 

35       

36      cgh.single_task<class ex1>([=]() { 

37        a_in[0] = 2; 

38      }); 

39    }); 

40    } 

41   

42    { 

43    sycl::range<1> a_size{SIZE}; 

44    sycl::buffer<int, 1>  a_device(a.data(), a_size); 

45    sycl::queue d_queue; 

46    d_queue.submit([&](sycl::handler &cgh) { 

47      auto a_in = 

a_device.get_access<sycl::access::mode::read_write, 

48                    sycl::access::target::global_buffer>(cgh); 
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49      Vassign<int> F(0, a_in); 

50      cgh.parallel_for(sycl::range<1>(SIZE), F); 

51    }); 

52    } 

53  }  

2.5.2 Error Handling 
C++ exception handling is the basis for handling error conditions in the programming model. Some 

restrictions on exceptions are in place due to the asynchronous nature of host and device execution. 

For example, it is not possible to throw an exception in kernel scope and catch it (in the traditional 

sense) in application scope. Instead, there are a set of restrictions and expectations in place when 

performing error handling. These include: 

• At application scope, the full C++ exception handling mechanisms and capability are valid as long 

as there is no expectation that exceptions can cross to kernel scope. 

• At the command group scope, exceptions are asynchronous with respect to the application scope. 

During command group construction, an async_handler can be declared to handle any 

exceptions occurring during execution in the command group.  

For further details on error handling, see the SYCL Specification. 

2.5.3 Fall Back 
Typically, a command group is submitted and executed on the designated command queue; however, 

there may be cases where the command queue is unable to execute the group. In these cases, it is 

possible to specify a fall back command queue for the command group to be executed upon. This 

capability is handled by the runtime. This fallback mechanism is detailed in the SYCL Specification.  

The following code fails due to the size of the workgroup when executed on Intel Processor Graphics, 

such as Intel HD Graphics 530. The SYCL specification allows specifying a secondary queue as a 

parameter to the submit function and this secondary queue is used if the device kernel runs into issues 

with submission to the first device.  

1  #include<CL/sycl.hpp> 

2  #include<iostream> 

3  #define N 1024 

4  #define M 32 

5  using namespace cl::sycl; 

6  int main(){ 

7  { 

8    cpu_selector cpuSelector; 

9    queue cpuQueue(cpuSelector); 

10  queue defaultqueue; 

11  buffer<int,2> buf(range<2>(N,N)); 

12  defaultqueue.submit([&](handler &cgh){ 

13    auto bufacc = buf.get_access<access::mode::read_write>(cgh); 

14    cgh.parallel_for<class ndim>(nd_range<2>(range<2>(N,N), 
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15      range<2>(M,M)), [=](nd_item<2> i){ 

16      id<2> ind = i.get_global_id(); 

17      bufacc[ind[0]][ind[1]] = ind[0]+ind[1]; 

18    }); 

19  },cpuQueue); 

20  auto bufacc1 = buf.get_access<access::mode::read>(); 

21  for(int i = 0; i < N; i++){ 

22    for(int j = 0; j < N; j++){ 

23      if(bufacc1[i][j] != i+j){ 

24        std::cout<<"Wrong result\n"; 

25        return 1; 

26      } 

27    } 

28  } 

29  std::cout<<"Correct results\n"; 

30  return 0; 

31 } 

32 } 
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3 Programming Interface 
This chapter details the oneAPI compilation process across direct programming and API-based 

programming covering CPU, GPUs, and FPGAs. Some details about the tools employed at each stage of 

compilation are explained. 

3.1 Single Source Compilation 
The oneAPI programming model supports single source compilation. Single source compilation has 

several benefits compared to separate host and device code compilation. It should be noted that the 

oneAPI programming model also supports separate host and device code compilation as some users 

may prefer it. Advantages of the single source compilation model include:  

• Usability – programmers need to create fewer files and can define device code right next to the call 

site in the host code.  

• Extra safety – single source means one compiler can see the boundary code between host and 

device and the actual parameters generated by host compiler will match formal parameters of the 

kernel generated by the device compiler.  

• Optimization - the device compiler can perform additional optimizations by knowing the context 

from which a kernel is invoked. For instance, the compiler may propagate some constants, infer 

pointer aliasing information across the function call. 

3.2 Compiler Drivers 
The Intel oneAPI DPC++ Compiler includes two compiler drivers:  

• dpcpp is a GCC* compatible compiler driver. It recognizes GCC-style command line options 

(starting with “-“) and can be useful for projects that share a build system across multiple operating 

systems.  

• dpcpp-cl is a Microsoft* Visual C++ compatible driver. This driver is only available on Windows. It 

recognizes Windows command line options (starting with “/”) and can be useful for Microsoft Visual 

Studio*-based projects.  

The examples in this guide use the dpcpp driver.  

3.3 Example Compilation 
The oneAPI tools are available in several convenient forms, as detailed in oneAPI Toolkit Distribution 

earlier in this guide. Follow the instructions in the Installation Guide to obtain and install the tools. Once 

the tools are installed and the environment is set, compile code for execution. 

https://software.intel.com/en-us/articles/installation-guide-for-intel-oneapi-toolkits
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3.3.1 API-Based Code 
The following code shows usage of an API call (a * x + y) employing the Intel oneAPI Math Kernel 

Library function mkl::blas::axpy to multiply a times x and add y across vectors of floating point 

numbers. It takes advantage of the oneAPI programming model to perform the addition on an 

accelerator. 

1 #include <vector> // std::vector() 

2 #include <cstdlib> // std::rand() 

3 #include <CL/sycl.hpp> 

4 #include "mkl_sycl.hpp" 

5  

6 int main(int argc, char* argv[]) { 

7      

8     double alpha = 2.0; 

9     int n_elements = 1024; 

10  

11     int incx = 1; 

12     std::vector<double> x; 

13     x.resize(incx * n_elements); 

14     for (int i=0; i<n_elements; i++) 

15         x[i*incx] = 4.0 * double(std::rand()) / RAND_MAX - 2.0;    

16         // rand value between -2.0 and 2.0 

17  

18     int incy = 3; 

19     std::vector<double> y; 

20     y.resize(incy * n_elements); 

21     for (int i=0; i<n_elements; i++) 

22         y[i*incy] = 4.0 * double(std::rand()) / RAND_MAX - 2.0;    

23         // rand value between -2.0 and 2.0 

24  

25     cl::sycl::device my_dev; 

26     try { 

27         my_dev = cl::sycl::device(cl::sycl::gpu_selector()); 

28     } catch (...) { 

29         std::cout << "Warning, failed at selecting gpu device.  

30          Continuing on default(host) device." << std::endl; 

31     } 

32  

33     // Catch asynchronous exceptions 

34     auto exception_handler = [] (cl::sycl::exception_list  

35         exceptions) { 

36         for (std::exception_ptr const& e : exceptions) { 

37             try { 

38                 std::rethrow_exception(e); 

39             } catch(cl::sycl::exception const& e) { 

40                 std::cout << "Caught asynchronous SYCL  
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41             exception:\n" 

42                 << e.what() << std::endl; 

43             } 

44         } 

45     }; 

46      

47     cl::sycl::queue my_queue(my_dev, exception_handler); 

48  

49     cl::sycl::buffer<double, 1> x_buffer(x.data(), x.size()); 

50     cl::sycl::buffer<double, 1> y_buffer(y.data(), y.size()); 

51  

52     // perform y = alpha*x + y 

53     try { 

54         mkl::blas::axpy(my_queue, n_elements, alpha, x_buffer,  

55         incx, y_buffer, incy); 

56     } 

57     catch(cl::sycl::exception const& e) { 

58         std::cout << "\t\tCaught synchronous SYCL exception:\n" 

59                   << e.what() << std::endl; 

60     } 

61      

62     // copy y_buffer data back to y vector 

63     auto y_accessor = y_buffer.template  

64       get_access<cl::sycl::access::mode::read>(); 

65     for (int i=0; i<y.size(); ++i) 

66         y[i] = y_accessor[i]; 

67      

68     std::cout << "The axpy (y = alpha * x + y) computation is  

69         complete!" << std::endl; 

70      

71     return 0; 

72 } 

To compile and build the application:  

1. Ensure that the MKLROOT environment variable is set appropriately (echo ${MKLROOT}). If it is 

not set appropriately, run the setvars.sh or setvars.bat script or set the variable to the folder 

that contains the lib and include folders. For more information about the setvars.sh script, 

see Get Started with Intel oneAPI Toolkits for Linux* or Get Started with Intel oneAPI Toolkits for 

Windows*.  

2. Build the application using the following command: 

dpcpp -I${MKLROOT}/include -Icommon  -DMKL_ILP64 -w -c axpy.cpp -o axpy.o 

3. Link the application using the following command:  

dpcpp -I${MKLROOT}/include -DMKL_ILP64 -w axpy.o -foffload-static-

lib="${MKLROOT}/lib/intel64"/libmkl_sycl.a -Wl,-export-dynamic -Wl,--start-

group "${MKLROOT}/lib/intel64"/libmkl_intel_ilp64.a 

"${MKLROOT}/lib/intel64"/libmkl_sequential.a 

https://software.intel.com/en-us/get-started-with-intel-oneapi-linux
https://software.intel.com/en-us/get-started-with-intel-oneapi-windows
https://software.intel.com/en-us/get-started-with-intel-oneapi-windows
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"${MKLROOT}/lib/intel64"/libmkl_core.a -Wl,--end-group -lsycl -lpthread -lm -

ldl -o axpy.out 

4. Run the application using the following command: 

./axpy.out 

3.3.2 Direct Programming 
The vector addition sample code is employed in this example. It takes advantage of the oneAPI 

programming model to perform the addition on an accelerator.  

The following command compiles and links the executable. 

dpcpp vector_add.cpp 

The components and function of the command and options are similar to those discussed in the API-

Based Code section. 

Execution of this command results in the creation of an executable file, which performs the vector 

addition when run. 

3.4 Compilation Model 
The command used to compile a program employing the oneAPI programming model is very similar to 

standard C/C++ compilation with standard compile and link steps. However, the compilation model 

supports code that executes on both a host and potentially several accelerators simultaneously. Thus, 

the commands issued by the compiler, linker, and other supporting tools as a result of compile and link 

steps are more complicated than standard C/C++ compilation targeting one architecture. The developer 

is protected from this complexity; however advanced users of the tools may want to understand these 

details to better target specific architectures. 

A DPC++ program can consist of a set of source files, where each may have both host and device code. 

Compilation of the host code is somewhat straightforward as the target architecture is known. Typically, 

the host is an x86-based computer.  

By default, the Intel oneAPI DPC++ Compiler compiles device code into a device-agnostic form that can 

run on any compatible devices. This is known as online compilation because the device-agnostic code 

gets compiled into a device-specific form at runtime, or when “online.” Additionally, DPC++ allows 

production of device-specific code at compile time. This process is known as offline compilation. Offline 

compilation for devices presents several challenges because of the need to target several architectures, 

some known and some unknown at the time of compilation. In addition, it may be helpful to apply 

aggressive optimization to a specific target. The compilation model supports these different needs. The 

compilation model enables:  

• Target specific code - Target specific versions of a kernel function  

• Target specific optimization – Compiler optimization for a specific target  

• General target support – Target a broad set of architectures 

• Future target support - Target a new architecture. This could be the case in forward compatibility 

cases where a new architecture provides new optimization opportunities.  



 

Programming Interface 

    33 

To support these needs, the code can be compiled into two main forms – a SPIR-V intermediate 

representation, which is the device-agnostic form, and target specific executable code.   

• The SPIR-V representation enables online compilation, which is compilation to device code at 

execution time.  

• Compilation to target specific executable code before executing the application is termed offline 

compilation. The Intel oneAPI DPC++ Compiler creates multiple code forms for each device.  

These two forms are bundled together in an application binary known as a fat binary. The fat binary is 

employed by the oneAPI runtime when the application executed and form needed for the target device 

is determined at runtime. Device code for multiple devices co-exists in a single fat binary. 

The following figure illustrates the compilation process from source code to fat binary. 

 

 

The tools participating in the compilation are represented by rectangles in the figure and are described 

as follows:  

• Driver – The executable name is dpcpp on Linux* and dpcpp-cl on Windows*. Invoke this file on 

the command line to start compilation. It orchestrates the compilation process and invokes other 

tools as needed. 

• Host compiler – the DPC++ host compiler. It is possible to employ a third-party host compiler by 

invoking the tools manually.  

• Device compiler – a DPC++ device compiler (there can be more than one), SPIR-V compiler by 

default. The output files have the extension *.bc. SPIR-V is produced after the device code linkage 

step. 

• SPIRV compiler - llvm-spirv – standard LLVM tool distributed with the Intel® oneAPI Base Toolkit 

that converts LLVM IR bitcode to SPIR-V. 

• Bundler – Marshalls host and device object code into a single file called a fat object. 
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• Unbundler – Unmarshalls fat objects back into their constituent host and device object code. It is a 

part of the bundler. 

• LLVM bitcode linker – standard LLVM tool distributed with the Intel® oneAPI Base Toolkit that links 

LLVM IR bitcode files. 

• <Target> Back End – a back end for the target <Target> used in the offline compilation scenario. 

Compiles SPIR-V to native device code form. 

• Platform linker – the standard linker on the development platform – ld on Linux and link.exe on 

Windows. 

• Offload wrapper - wraps device binaries (different from device object files) into a host object file 

linked with the final DPC++ executable (fat binary) 

File Types: 

• Device object file - device object code suitable for further linkage with other device objects. Can be 

LLVM bitcode or some native ISA. 

• Host object file - usual object file containing host object code. Examples include COFF on Windows 

or ELF on Linux. 

• Fat object file - a host object format file containing host and device code compiled for all targets 

passed via -fsycl-targets. Device code is inserted into special object file sections.  

• Fat binary file - a host executable containing device binaries - either in SPIR-V or other form.  

The compilation is a three-step process: 

1. Compile to Object – The source code in the files a.cpp and b.cpp is parsed into an intermediate 

representation. Optimizations are invoked on the intermediate representation. The compiler 

command line specifies a list of targets for device object code generation or the default SPIR-V can 

be used. These objects are bundled together into a fat object. Two fat objects are produced - a.o 

and b.o (a.obj and b.obj on Windows) 

2. Link to Executable – The fat objects are unbundled and linked together into a target specific image 

and a generic image. Additional optimizations may be invoked during this phase. The target specific 

image and generic image are grouped together into a fat binary. 

3. Execute – The fat binary is loaded for execution. Once the program control flow arrives to the place 

where DPC++ kernel offload is invoked, the oneAPI runtime is called to determine if a target specific 

executable image exists. If it does, execution proceeds with the target specific executable image. If it 

does not, the generic image is loaded, which calls the compiler to create a target specific image 

from the SPIR-V image when the kernel is submitted. If neither of the two exist, then the kernel 

executes on the host. Execution of the user application portion of the fat binary proceeds.  

The starting point for any compilation involves the invocation of the compiler driver, dpcpp. The 

following compilation command compiles two source files, a.cpp and b.cpp, compiles, and links them 

into an executable: 

dpcpp a.cpp b.cpp 

This is the simplest compilation scenario where compilation and linkage are done in one step and the 

device code is delivered in device-agnostic form. More complex scenarios are described later.   

3.4.1 Compile to Object Step 
During the compile to object step, the source files are compiled and the output is the fat objects - one 

per input source. To support single source compilation, an integration header file is created for each 
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source. In the compilation model figure above, these are named a.h and b.h respectively; however, in 

practice they will have a uniquely generated name to avoid conflict with any actual a.h or b.h file. The 

integration header enables the host code to invoke the device code and execute it on different devices 

with the necessary communication and coordination enabled through the oneAPI programming model.  

Once the integration header is created, the compile to object step is performed by the appropriate 

compiler: 

• Host Compiler - The host code is compiled by the host compiler. The host compiler is set by default 

during installation. The output is an object file that represents the host code. It includes the 

integration header to interoperate with the device code.  

• SPIR-V device compiler – The device code is compiled by the SPIR-V compiler to generate a SPIR-V 

intermediate representation of the code. The output is a target-independent object file, which is a 

SPIR-V binary intermediate representation of the device code.  

• Specific device compiler – The device code is compiled by a specific device compiler to generate a 

target specific object file. This is part of an offline compilation scenario. The target is specified using 

the -Xsycl_targets option. 

Once the host object file and the specified target object files have been created, they are grouped 

together using the bundler tool into a fat object file. In the example command above, there is no 

specific device compiler employed; only the SPIR-V device compiler is invoked to create target 

independent object files. Note that when compilation and linkage are done in a single step, then no fat 

objects are created, thus avoiding bundling/unbundling overhead.  

3.4.2 Link to Executable Step 
The link to executable step transforms the fat object files into a fat binary. The actions taken during this 

step are very similar to the traditional link step of compiling for one target, such as x86: 

• Object files are linked together, satisfying variable and function dependencies between the files 

• Third-party library dependencies are satisfied by linking the specified libraries 

• Compiler libraries and runtime routines are linked into the resulting executable. 

There are some differences. Since the oneAPI programming model enables more devices to be 

employed and compilation to occur at more than one time, the additional steps employed during the 

link to executable step are as follows: 

• Unbundling of the fat object files – Multiple target-specific and generic SPIR-V object files are 

bundled during the compile to object step. These fat object files are unbundled so that the correct 

target specific and generic SPIR-V object files can be grouped together for linking. 

• Offline compilation – Compilation during the link to executable step can occur. This step is optional 

and is used in the offline compilation scenario.  

The option to request offline compilation (for example, for the Intel Processor Graphics included in 

6th Generation Intel Processors) at this step is:  

dpcpp -fsycl-targets=spir64_gen-unknown-linux-sycldevice -Xsycl-target-

backend=spir64_gen-unknown-linux-sycldevice "-device skl" src1.cpp 

src2.cpp  

The process of compiling the linked generic SPIR-V device binary into a target image is repeated for 

every device requested. 
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• Fat binary – The resulting host code and potentially multiple device images are linked together into 

a fat binary. This is the resulting executable that executes on the host device and then selectively 

executes the device kernels on the appropriate devices.  A generic SPIR-V image may be included in 

the fat binary for use during the online compilation step (default if offline compilation is not 

requested). 

3.4.3 Execute Step 
During the execute step, the fat binary is obtained and loaded onto the system for execution. The fat 

binary is an operating system module (an executable or a dynamically loaded library) containing one or 

more device code binaries. 

When a DPC++ application starts, its operating system modules are loaded into the process memory, 

and static initialization is performed for each. During this static initialization process, each module 

makes a call into the DPC++ runtime to register available device binary images. The DPC++ runtime 

bookmarks the registered binaries and uses them to resolve kernel launch requests to the appropriate 

device kernels. 

To target new devices, the oneAPI programming model supports online compilation. If a device code 

binary is not available during a kernel launch request, an online compilation may be requested.  

DPC++ applications may also dynamically compile and run OpenCL kernels provided in the source 

form. The main APIs for this feature are:  

• cl::sycl::program::build_with_source to dynamically create a kernel from a string 

containing OpenCL code.  

• cl::sycl::program::get_kernel to obtain the DPC++ kernel instance, which can be run on a 

device.  

See the DPC++ Specification for more details about the APIs.  

3.4.4 Online Compilation  
Online compilation is the compilation of the kernel code during the execute step. This mode of 

execution can have significant performance benefits, as the compiler may generate more efficient code. 

As an example, the device kernel may take advantage of a larger SIMD width made available on the 

underlying hardware it executes on, or some kernel parameters, such as data tile size or loop count, 

may be set to specific constants to help when applying typical compiler optimizations like loop 

unrolling.  

Online compilation results in compiling the SPIR-V binary image to native device code. SPIR-V is the 

default portable device code format, which can run on any compatible device.  

The oneAPI runtime does not perform the online compilation. Instead, it requests underlying runtimes 

for the requested devices to perform the compilation job via lower-level interfaces. For example, it will 

ultimately use the clCreateProgramWithIL API on an OpenCL device to take SPIR-V as input and 

compile it to native code. 

Offline-compiled device code is injected into the runtime system though a different API. In the OpenCL 

platform case, the API is clCreateProgramWithBinary. 
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Online compilation of a SPIR-V binary image embedded into the fat binary is usually triggered when 

one of the kernels constituting the module is requested to run. The request 

cl::sycl::handler::parallel_for always has information about the device where the kernel is 

to be executed; hence the runtime knows what device(s) to target. When one kernel is requested to run, 

the entire SPIR-V module it belongs to is compiled.  

3.5 CPU Flow 
Use of a CPU is recommended for use cases with branch operations, instruction pipelining, dynamic 

context switch, and so on.  

DPC++ supports online and offline compilation modes for the CPU target. Online compilation is the 

same as for all other targets. 

3.5.1 Example CPU Commands 
The commands below implement the scenario when part of the device code resides in a static library.  

Produce a fat object with device code: 

dpcpp -c static_lib.cpp 

Create a fat static library out of it using the ar tool: 

ar cr libstlib.a static_lib.o 

Compile application sources: 

dpcpp -c a.cpp 

Link the application with the static library: 

dpcpp -foffload-static-lib=libstlib.a a.o -o a.exe 

3.5.2 Online Compilation 
No specifics for CPU target. The command below produces a fat binary with a SPIR-V image, which can 

be run with online compilation on any compatible device, including a CPU.  

dpcpp a.cpp b.cpp -o app.out 

3.5.3 Offline Compilation 

NOTE: This is an experimental feature with limited functionality.  

Use this command to produce app.out, which only runs on an x86 device. 

dpcpp -fsycl-targets=spir64_x86_64-unknown-linux-sycldevice a.cpp b.cpp -o 

app.out 
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3.5.4 Optimization Flags 
In offline compilation mode, optimization flags can be used to produce code aimed to run better on a 

specific CPU architecture. Those are passed via the -Xsycl-target-backend dpcpp option:  

dpcpp -fsycl-targets=spir64_x86_64-unknown-linux-sycldevice -Xsycl-target-

backend=spir64_x86_64-unknown-linux-sycldevice “<CPU optimization flags>” 

a.cpp b.cpp -o app.out 

Supported CPU optimization flags are: 

-simd=<instruction_set_arch> Set target instruction set architecture: 

'sse42' for Intel(R) Streaming SIMD Extensions 4.2 

'avx' for Intel(R) Advanced Vector Extensions 

'avx2' for Intel(R) Advanced Vector Extensions 2 

'skx' for Intel(R) Advanced Vector Extensions 512 

NOTE: The set of supported optimization flags may be changed in future releases. 

3.5.5 Host and Kernel Interaction 
Host code interacts with device code through kernel parameters and data buffers represented with 

cl::sycl::accessor objects or cl_mem objects for OpenCL data buffers.  

3.6 GPU Flow 
The GPU Flow is like the CPU flow except that different back ends and target triples are used. 

Target triple for GPU offline compiler is spir64_gen-unknown-linux-sycldevice. 

NOTE: GPU offline compilation currently requires an additional option, which specifies the desired GPU 

architecture. 

3.6.1 Example GPU Commands 
The examples below illustrate how to create and use static libraries with device code on Linux.  

Produce a fat object with device code: 

dpcpp -c static_lib.cpp 

Create a fat static library out of it using the ar tool: 

ar cr libstlib.a static_lib.o 

Compile application sources: 

dpcpp -c a.cpp 

Link the application with the static library: 

dpcpp -foffload-static-lib=libstlib.a a.o -o a.exe 
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3.6.2 Offline Compilation 

NOTE: This is an experimental feature with limited functionality.  

The following example command produces app.out for a specific GPU target:  

dpcpp -fsycl-targets=spir64_gen-unknown-linux-sycldevice -Xsycl-target-

backend=spir64_gen-unknown-linux-sycldevice "-device skl" a.cpp b.cpp -o 

app.out 

 

3.7 FPGA Flow 
Field-programmable gate arrays (FPGAs) are integrated circuits that can be configured repeatedly to 

perform an infinite number of functions.  

The key benefit of using FPGAs for algorithm acceleration is that they support wide, heterogeneous, 

and unique pipeline implementations. This characteristic contrasts with many different types of 

processing units such as symmetric multiprocessors, digital signal processors (a special-purpose 

processor), and graphics processing units (GPUs). In these types of devices, parallelism is achieved by 

replicating the same generic computation hardware multiple times.  

For general Intel oneAPI DPC++ Compiler use, FPGA compilation, or design flow of device-specific code 

is special in the following ways:  

• FPGAs support only the offline compilation mode and provide two device compilation stages to 

help iterate on a program. For more information, see FPGA Offline Compilation. 

• FPGA devices support two image types, each serving a different purpose. For more information, see 

FPGA Device Image Types. 

The following diagram shows a typical compilation flow for FPGA devices.  
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The emulation image verifies the code correctness and only takes seconds to complete. This is the 

recommended first step in compiling code. Next, the static report helps determine whether the 

estimated kernel performance data is acceptable. After generating a hardware image, use Intel® VTune™ 

Profiler to collect key profiling data from hardware runs.  

For information about emulation and hardware images, see FPGA Device Image Types. For more 

information about the static report or collecting profiling data, see the Intel oneAPI DPC++ FPGA 

Optimization Guide. 

3.7.1 Example FPGA Commands 
Generating an emulation image: 

dpcpp -fintelfpga <source_file>.cpp  

Generating a static report: 

dpcpp -fintelfpga <source_file>.cpp -fsycl-link -Xshardware 

Generating an FPGA hardware image (Linux only): 

dpcpp -fintelfpga <source_file>.cpp -c -o <file_name>.o  

dpcpp -fintelfpga <file_name>.o -Xshardware 

Running an FPGA image on the Intel® Programmable Acceleration Card (PAC) with Intel® Arria® 10 GX 

FPGA: 

./<fpga_hw_image_file_name> 

For more information about command syntax, see FPGA Offline Compilation. 

3.7.2 Offline Compilation 

NOTE: FPGA devices do not support online compilation.  

NOTE: While all compilation flows (emulation, report, and hardware) are supported on Linux, only the 

emulation flow is supported on Windows.  

As shown in the previous figure, when targeting an FPGA device, an FPGA target compiler is injected 

into the device generation phase. 

• In the first FPGA compilation stage, the FPGA target compiler synthesizes the high-level DPC++ 

code to RTL-level design abstraction. This process usually takes minutes to complete. At the end of 

this stage, the compiler generates a high-level design HTML report that contains most of the 

information required to analyze and iterate the design.  

• In the second FPGA compilation stage, the FPGA target compiler analyzes and synthesizes the RTL-

level design abstraction to an FPGA configuration bitstream. This process takes a long time (usually 

in hours) to complete. View accurate FPGA frequency and resource utilization results after this 

process completes.  

 

The most common case for FPGA compilation is targeting a single device. Use the following syntax for 

compiling an FPGA device: 

https://software.intel.com/en-us/download/oneapi-fpga-optimization-guide
https://software.intel.com/en-us/download/oneapi-fpga-optimization-guide


 

  Intel® oneAPI Programming Guide (Beta) 

42    

 

NOTE: On Windows 7 or Windows 8.1 systems, ensure that the combined length of the source or output file 

name and the corresponding file path does not exceed 260 characters. If the combined length of the 

source or output file name and its file path exceeds 260 characters, the offline compiler generates the 

following error message: Error: failed to move <work_directory> to <project_directory> 

where <work_directory> is used for compilation and <project_directory> is the folder storing the 

reports and FPGA related files generated during the compilation. Windows 10 systems do not have the 

260-character path limit.  

Examples:   

• Use the following command to compile for emulation:  

dpcpp -fintelfpga *.cpp  

NOTE: Remove the project directory <file_name>.proj (if it exists) before executing the offline compilation 

command, where <file_name> is the name of output binary executable name. 

• Linux only: Use the following command to generate the high-level design report:  

dpcpp -fintelfpga *.cpp -fsycl-link -Xshardware 

• Linux only: Use the following command to compile for hardware:  

dpcpp –fintelfpga *.cpp -c  

dpcpp –fintelfpga *.o -Xshardware 

 

When compiling for an FPGA hardware image, a *.d file and a *.prj directory are generated.  

• Run the FPGA hardware image using the ./<fpga_hw_image_file_name> command.  

• The *.prj directory contains reports that describe the generated hardware. Use the reports for 

performance tuning.  

• The *.d file is used to map the generated code to the source to facilitate the reports. 

TIP: For additional information, refer to the FPGA tutorial sample “Compile Flow” listed in the Intel oneAPI 

Samples Browser. 

When compiling an FPGA hardware image, the Intel oneAPI DPC++ Compiler provides checkpoints to 

inspect errors and modify source code without performing a full compilation on each iteration. The 

following table summarizes the checkpoints: 
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FPGA Compilation Checkpoints 

Checkpoint File Extension Flow Type Compile Time 
From Source 

Capabilities 
Available 

Object files • *.o  

• *.obj 

• Emulation 

• Hardware 

In seconds Detect compiler-

parsing errors. For 

example, syntax.   

FPGA early 

image object 

• *.a 

• *.lib  

NOTE: *.a and 

*.lib files contain 

all FPGA device and 

host code in 

corresponding files.  

Hardware In minutes View the report that 

the Intel oneAPI 

DPC++ Compiler 

generates.   

FPGA image 

object 

• *.a 

• *.lib  

NOTE: *.a and 

*.lib files contain 

all FPGA device and 

host code in 

corresponding files.   

Hardware In hours The Intel oneAPI 

DPC++ Compiler 

generates a complete 

FPGA image. This 

stage of compilation 

is time-consuming 

because mapping a 

fully custom 

computation pipeline 

onto FPGA's 

resources is a 

compute-intensive 

optimization 

problem. 

Refer to FPGA Device 

Link for more 

information.  

Executable Program executable • Emulation 

• Hardware 

• In seconds for 

emulation flow 

• In hours for 

hardware flow. 

Refer to FPGA Device 

Image Types for 

more information 

about emulation and 

hardware images. 

 

3.7.2.1 Specify Target Platform (-fintelfpga) 

Use the -fintelfpga flag to target a single FPGA device. It sets the default compiler 

settings, including the optimization level, debug data, linking libraries, and so on.  
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3.7.2.2 FPGA-Specific Arguments (-Xs) 

The –Xs flag passes the FPGA-specific arguments. It does not require a target name. When there are 

multiple targets, arguments are passed to all targets. 

NOTE: Targeting multiple FPGAs is not supported in a single compile. 

There are two ways of using the –Xs argument:  

• Standalone flag to apply to the subsequent flag. For example:  

dpcpp -fintelfpga hello.cpp -Xs -fp-relaxed -Xs -fpc  

dpcpp -fintelfpga hello.cpp -Xs “-fp-relaxed -fpc”  

• Prefix to a platform compiler flag. For example:  

dpcpp -fintelfpga hello.cpp -Xsfp-relaxed -Xsfpc  

where, -fp-relaxed and -fpc flags are passed to the FPGA target compiler. For more information 

about these flags, see the Intel oneAPI DPC++ FPGA Optimization Guide. 

Use one of the following flags to specify the type of FPGA image: 

FPGA Target-Specific Arguments 

FPGA Device Image Type Arguments 

Emulation (default) N/A 

Hardware  -Xshardware  

3.7.2.3 FPGA Device Link 

In the default case (no device link option specified), Intel oneAPI DPC++ Compiler handles the host 

generation, device image generation, and final executable linking as follows:  

dpcpp -fintelfpga hello.cpp -Xshardware  

When generating a hardware image, use a device link to only compile the device portion and choose 

FPGA compilation checkpoints. Input files for the device link command must contain all device parts for 

an FPGA image generation.  

Advantages of using a device link:  

• Fast development iteration cycle (minutes to generate report vs hours to generate the hardware).  

• Separation of the device code compilation from the host code compilation.  

⎯ If only the host code is changed, recompile only the host code.   

⎯ If the DPC++ program is partitioned into separate host code and device code and modifications 

are made only on the host code, reuse the FPGA early image object or FPGA image object for 

the device code. 

TIP: Use FPGA early image and FPGA image objects to link and save compile time.  

Use one of the following device link options: 
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FPGA Device Link Options (Linux) 

Device Link Option Description 

-fsycl-link[=early]  Default case. Generates an FPGA early image object and a HTML report.    

NOTE: Since this is the default option, specifying [=early] is optional.   

-fsycl-link=image  Generates a complete FPGA hardware image to use for linking. 

Examples:  

• Use the following command to generate an HTML report:  

dpcpp -fintelfpga -fsycl-link[=early] -o dev_early.a 

*.cpp/*.o -Xshardware  

• Use the following command to generate an FPGA image for hardware:  

dpcpp -fintelfpga -fsycl-link=image -o dev.a *.cpp/*.o  

-Xshardware  

• Use the following command to generate an FPGA image for hardware from an FPGA early image 

object:  

dpcpp -fintelfpga -fsycl-link=image -o dev.a 

dev_early.a -Xshardware  

Example 1 - Recompiling the Host Program  

A program is partitioned into multiple source files as a.cpp, b.cpp, main.cpp, and util.cpp. Only 

a.cpp and b.cpp files contain the device code. The following example shows how to save compile 

time by recompiling only the host program: 

1. Generate a *.o (an FPGA image object) file by running the following command:   

dpcpp -fintelfpga a.cpp b.cpp –fsycl-link=image  

-o dev.a -Xshardware.   

NOTE: This command takes hours to complete.  

2. Compile and link the host part by running the following commands:  

dpcpp -fintelfpga main.cpp -c -o main.o  

dpcpp -fintelfpga util.cpp -c -o util.o  

dpcpp -fintelfpga dev.a main.o util.o -o a.out  

Where, a.out is the executable.  

If modifications are made to only main.cpp and util.cpp files, then rerun only the commands from 

step 3 that complete in a few seconds. 

Example 2 - Separating FPGA Compilation and Host Linking 

The following example shows how to save compile time when recompiling the application with different 

flags or parameters, but unchanged device code: 

1. Compile the source application to a *.o file. 

dpcpp -fintelfpga -c a.cpp -o a.o 

2. Generate a *.a (FPGA image object) file. 
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dpcpp -fintelfpga a.o -fsycl-link=image -o dev.a -Xshardware 

NOTE: This command takes hours to complete. 

3. Compile and link to the executable. 

dpcpp -fintelfpga dev.a -o a.out 

If linking issues are encountered in step 3, re-run only that command with proper linking flags and it will 

complete in few seconds. 

TIP: For additional information, refer to the FPGA tutorial sample “Device Link” listed in the Intel oneAPI 

Samples Browser. 

3.7.2.4 FPGA Device Image Types 

An FPGA device image contains a program or bitstream required to run on an FPGA. Unlike other 

devices, FPGA devices support the following image types: 

FPGA Device Image Types 

Image Type Purpose Toolkit 
Requirements 

Compile 
Time 

Emulation Verifies the code correctness.  Use this mode if 

the Intel oneAPI 

Base Toolkit is 

installed. 

Compilation 

completes in 

few seconds. 

Report Generates a static optimization report for 

design analysis. When completed, reports are 

available in 

<project_name>.prj/reports/report.html. 

For more information about the reports, refer 

to the Intel oneAPI DPC++ FPGA Optimization 

Guide. 

Use this mode if 

the Intel oneAPI 

Base Toolkit is 

installed. 

Compilation 

completes in 

a few 

minutes. 

Hardware (Linux 

only) 

Generates the actual bitstream on an FPGA 

device.  

Use this mode if 

the Intel® FPGA 

Add-On for 

oneAPI Base 

Toolkit (Beta) is 

installed. 

Compilation 

completes in 

few hours.  

 

3.7.3 Targeting Multiple FPGAs 
Not supported for oneAPI Beta release. 
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3.7.4 Other Supported Intel oneAPI DPC++ Compiler Options 
The Intel oneAPI DPC++ Compiler offers a list of options that allow you to customize the kernel 

compilation process.  

The following table provides a summary of all options supported by the Intel oneAPI DPC++ Compiler: 

Compiler Options  

Option name Description 

-Xsv Generates a report on the progress of the compilation. 

-Xsemulator Generates an emulator device image. 

-Xshardware Generates a hardware device image. 

For more information about the FPGA optimization flags, refer to the Intel oneAPI DPC++ FPGA 

Optimization Guide. 

3.7.5 FPGA Device Selection in the Host Code 
To explicitly set an FPGA emulator device or FPGA hardware device, include the following header file in 

the host code: 

CL/sycl/intel/fpga_extensions.hpp 

Declare the device selector type as one of the following: 

• For the FPGA emulator, use the following: 

intel::fpga_emulator_selector device_selector; 

• For the FPGA hardware device, use the following: 

intel::fpga_selector device_selector; 

 

Consider the following sample code: 

1 #include <CL/sycl/intel/fpga_extensions.hpp> 

2 using namespace cl::sycl; 

3 ... 

4     #ifdef FPGA_EMULATOR 

5     intel::fpga_emulator_selector device_selector; 

6     #else 

7     intel::fpga_selector device_selector; 

8     #endif 

9  

10     queue deviceQueue(device_selector); 

11 ... 

NOTE: If runtime cannot find fpga_emulator_selector or fpga_selector in the host code, an error 

message is displayed. 

https://software.intel.com/en-us/download/oneapi-fpga-optimization-guide
https://software.intel.com/en-us/download/oneapi-fpga-optimization-guide
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3.7.6 Host and Kernel Interaction 
FPGA devices typically communicate with the host (CPU) via I/O, such as PCIe.  

 

A PCIe-connected FPGA typically has its own private DDR on which it primarily operates. Prior to 

executing a kernel on the FPGA reconfigurable logic, the CPU must first bulk transfer (over dynamic 

memory access (DMA)) all data that the kernel needs to access into the FPGA’s local DDR memory. 

When the kernel completes its operations, it must transfer the results over DMA back to the CPU. The 

transfer speed is bound by the PCIe link itself and the efficiency of the DMA solution, for example, on 

the Intel® Arria® 10 programmable acceleration card (PAC), which has a PCIe Gen 3 x 8 link, transfers are 

typically 6 to 7 GB/s. For more information, refer to the Intel oneAPI DPC++ FPGA Optimization Guide, 

which highlights techniques for eliminating unnecessary transfers (for example, by correctly tagging 

read-only or write-only data).   

Further, improve system efficiency by maximizing the number of concurrent operations. For example, 

because PCIe supports simultaneous transfers in opposite directions and PCIe transfers do not interfere 

with kernel execution, aim to have device-to-host transfers, host-to-device transfers, and kernel 

executions all executing simultaneously to maximize FPGA device utilization. For more information, 

refer to the Intel oneAPI DPC++ FPGA Optimization Guide, which describes techniques, such as double 

buffering, to help improve system efficiency. 

Configuring the FPGA reconfigurable logic is a lengthy operation requiring several seconds of 

communication with the FPGA device. The runtime automatically manages this configuration, which 

might occur when a kernel launches at initialization, or might not occur if the same programming file 

has already been loaded onto the device. To manage this variability and when measuring performance, 

perform a warm-up that executes one kernel prior to taking any time measurements in a program. 

Kernels on an FPGA consume reconfigurable logic and can service only one invocation of that kernel at 

a time. A program that launches multiple invocations of the same kernel instance requires the runtime 

to execute those invocations sequentially on the same kernel logic. 

For more information, see:  

• Intel oneAPI DPC++ FPGA Optimization Guide 

• Intel® oneAPI DPC++ FPGA Workflows on Third-Party IDEs 

• https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-

kits/altera/acceleration-card-arria-10-gx/overview.html 

• https://en.wikipedia.org/wiki/Direct_memory_access 

• https://en.wikipedia.org/wiki/PCI_Express 

• https://en.wikipedia.org/wiki/DDR4_SDRAM 

https://software.intel.com/en-us/download/oneapi-fpga-optimization-guide
https://software.intel.com/en-us/download/oneapi-fpga-optimization-guide
https://software.intel.com/en-us/articles/intel-oneapi-dpcpp-fpga-workflow-on-ide
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx/overview.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx/overview.html
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/PCI_Express
https://en.wikipedia.org/wiki/DDR4_SDRAM
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3.7.7 FPGA Workflows in IDEs 
The oneAPI tools integrate with third-party integrated development environments (IDEs) on Linux 

(Eclipse*) and Windows (Visual Studio*) to provide a seamless GUI experience for software 

development. See Intel oneAPI DPC++ FPGA Workflows on Third-Party IDEs for more details.  

3.8 Complex Scenario: Use of Static Libraries  
The Intel oneAPI DPC++ Compiler supports use of static libraries, which contain host and device 

compiled objects.  

3.8.1 Create the Static Library 
Prepare the compiler and compile the source as described in the Get Started Guide.  

dpcpp app1.cpp app2.cpp -c 

On Linux: ar cr libapp.a app1.o app2.o 

On Windows: lib -out:libapp.lib app1.obj app2.obj  

3.8.2 Use the Static Library 
After creating the library, use it when creating the final application. A fat library is treated differently 

than a regular library. The -foffload-static-lib option is used to signify the necessary behavior. 

On Linux: dpcpp main.cpp -foffload-static-lib=libapp.a   

On Windows: dpcpp main.cpp -foffload-static-lib=libapp.lib   

3.9 Standard Intel oneAPI DPC++ Compiler Options 
The following standard options are available. The options are not separated by host only and device 

only compilation.  

Option Description 

-fsycl-targets=T1,...,Tn Makes Intel oneAPI DPC++ Compiler generate 

code for devices represented by comma-

separated list of triples. Some triples can 

represent offline compilation. 

-foffload-static-lib=<lib> Link with fat static library. 

Link with <lib>, which is a fat static archive 

containing fat objects that correspond to the 

target device. When linking, clang will extract 

the device code from the objects contained in 

the library and link it with other device objects 

https://software.intel.com/en-us/articles/intel-oneapi-dpcpp-fpga-workflow-on-ide
https://software.intel.com/en-us/get-started-with-dpcpp-compiler
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coming from the individual fat objects passed on 

the command line. 

NOTE: Any libraries that are passed on the command line 

which are not specified with -foffload-static-lib are 

treated as host libraries and are only used during the final 

host link. 

-fsycl-device-only Generate a device only binary. 

-Xsycl-target-backend=T "options" Specifies options that are passed to the backend 

in the device compilation tool chain for target T.  

• Offline compilation: device compiler for the target 

T. 

• Online compilation: device compiler for the target 

T to use for runtime compilation. 

If needed, other tools participating in the 

compilation and linkage can be customized 

further. To do that, backend in the option name 

should be replaced with tool ID like this: -

Xsycl-target-<toolid>=T. The additional tool 

IDs include: 

• frontend 

⎯ The front-end+middle-end of the SPIRV-

based device compiler for target T. The 

middle end is the part of a SPIRV-based 

device compiler which generates SPIRV. This 

SPIRV is then passed by the clang driver to 

the T's back-end. 

• linker 

⎯ Device code linker for target T. 

⎯ Some targets may have frontend and 

backend in one component; in that case 

options are merged.  

-fsycl-link Perform a partial link of device binaries. This is 

then wrapped by the offload wrapper, allowing 

the device binaries to be linked by the host 

compiler/linker. 

-fsycl-link=<value> Perform a partial link of device binaries, to be 

used with FPGA. The <value> can be of the 

following 

• early 
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⎯ Generating html report at this point. User 

can stop here and iterate on their program. 

Usually takes minutes to generate. User 

can also resume from this point and 

generate FPGA image. 

 

• image 

⎯ Generating FPGA bitstream which is ready 

to be linked and used on a FPGA board. 

Usually takes hours to generate. 

-fintelfpga Option specific to performing ahead of time 

compilation with FPGA. Functionally equivalent 

to using -fsycltargets=spir64-unknown-<os>-

sycldevice, adding compiling with dependency 

and debug information enabled. 

-Xs "options" 

-Xs<arg> 

Similar to -Xsycl-target-backend, passing 

"options" to the backend tool. The -Xs<arg> 

variant works as follows: 

-Xshardware → -Xsycl-target-backend "-

hardware" 
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4 Data Parallel C++ (DPC++) Programming 
Language and Runtime 
The Data Parallel C++ (DPC++) programming language and runtime consists of a set of C++ classes, 

templates, and libraries used to express a DPC++program. This chapter provides a summary of the key 

classes, templates, and runtime libraries used to program. 

4.1 C++ Version Support 
Chapter 2 documented the C++ language features accepted in code at application scope and command 

group scope in a DPC++ program. Application scope and command group scope includes the code that 

executes on the host. Chapter 2 also documented the C++ language features accepted in code at kernel 

scope in a DPC++ program. Kernel scope is the code that executes on the device. In general, the full 

capabilities of C++ are available at application and command group scope. At kernel scope there are 

limitations in accepted C++ due to the more limited, but focused, capabilities of accelerators. 

Compilers from different vendors have small eccentricities or differences in their conformance to the 

C++ standard. The Intel oneAPI DPC++ Compiler is a LLVM-based compiler and therefore drafts the 

specific behavior of the LLVM-based compilers in accepting and creating executables from C++ source 

code. To determine the specific LLVM version that the Intel oneAPI DPC++ Compiler is based upon, use 

the –version option. 

dpcpp --version 

For example:  

DPC++ Compiler 2021.1 (2019.8.x.0.1010) 

Target: x86_64-pc-windows-msvc 

Thread model: posix 

InstalledDir: c:\PROGRA~2\INTELO~1\compiler\latest\windows\bin 

4.2 Header Files and Namespaces 
The compiler header files are in a subdirectory of the Intel oneAPI DPC++ Compiler installation. For 

example:  

<install_dir>/compiler/latest/<os>/lib/   

where <install_dir> is the directory where the Intel oneAPI DPC++ Compiler is installed and <os> is 

either windows or linux. 

Within the header files, the names correspond with the primary DPC++ classes for implementing the 

language.  

The Intel-specific extensions to SYCL* that DPC++ is based upon are located in the following location:  
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On Windows: 

<install_dir>\compiler\latest\windows\lib\clang\10.0.0\include\CL\sycl\intel 

On Linux: 

<install_dir>/compiler/latest/linux/compiler/lib/clang/10.0.0/include/CL/sycl

/intel 

4.3 DPC++ Classes, Class Templates, & Defines 
The following table summarizes the DPC++ classes, class templates, and defines of the programming 

language. In addition, the specific include file for the definition of these items are mentioned along with 

a description of each. 

Class Include file(s) Description 

Accessor accessor.hpp, accessor2.hpp Enables and specifies access to 

buffers, images, and device local 

memory 

Atomic atomic.hpp Operations and member functions 

to guarantee synchronized access 

to data values 

Buffer buffer.hpp Encapsulates memory for 

communication between host and 

device(s) 

Built-in functions builtin.hpp Math functions that can be 

employed efficiently across host 

and devices  

Command Group Handler handler.hpp, handler2.hpp Encapsulates commands executed 

in command group scope 

Context context.hpp Encapsulates a platform and 

collection of devices 

Device device.hpp Encapsulates attributes, features, 

and capabilities of an accelerator  

Device event device_event.hpp Encapsulates functions used to 

wait for other operations 

Device selector device_selector.hpp Enables selection of a device for 

execution of command groups 

Event event.hpp Encapsulates objects used to 

coordinate memory transfers and 

kernel execution 
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Class Include file(s) Description 

Exception exception.hpp Notifications used by the program 

to handle outlier occurrences such 

as error conditions. 

Group group.hpp Template class encapsulates work-

groups 

Id id.hpp Encapsulates a vector of 

dimensions for accessing individual 

items in a global or local range 

Image image.hpp Encapsulates memory for 

communication between host and 

device(s) in an optimized format 

Item item.hpp Encapsulates a function object 

executing within a range 

Kernel kernel.hpp Encapsulates a kernel object which 

is the function that executes on 

the device 

Multi-pointer multi_ptr.hpp Abstraction around low-level 

pointer to enable pointer like 

access across host and devices 

Nd_item nd_item.hpp Encapsulates each work-item in an 

ND-range 

Nd_range nd_range.hpp Encapsulates the index space for 

1-,2-, or 3- dimensional data 

Platform platform.hpp Encapsulates the oneAPI host and 

devices on the system 

Program program.hpp Encompasses a program that 

employs the oneAPI programming 

model, communicating if source 

code is compiled or linked 

Property Interface property_list.hpp Enables passing extra parameters 

to buffer, image, and device 

classes 

Queue queue.hpp Object and methods for executing 

command queues 

Range range.hpp Encapsulates the iteration domain 

of a work-group in 1-, 2-, or 3-

dimensions 



 

Data Parallel C++ (DPC++) Programming Language and Runtime 

    55 

Class Include file(s) Description 

Standard library classes stl.hpp Interfaces for C++ standard 

classes  

Stream  Methods for outputting oneAPI 

data types 

Vec and Swizzled Vec types.hpp Vec class representing a vector of 

data elements. Swizzled vec class 

enables selection of combinations 

of elements in a vec object. 

Version version.hpp Defines compiler version 

The following sections provide further details on these items. These sections do not provide the 

exhaustive details found in the SYCL Specification. Instead, these sections provide: 

• A summary that includes a description and the purpose  

• Comments on the different constructors, if applicable 

• Member function information, if applicable 

• Special cases to consider with the DPC++ implementation compared to the SYCL Specification 

For further details on SYCL, see the SYCL Specification. 

4.3.1 Accessor 
A DPC++ accessor encapsulates reading and writing memory objects which can be buffers, images, or 

device local memory. Creating an accessor requires a method to reference the desired access target. 

Construction also requires the type of the memory object, the dimensionality of the memory object, the 

access mode, and a placeholder argument.  

A common method of construction can employ the get_access method of the memory object to specify 

the object and infer the other parameters from that memory object. 

The tables in the Memory Model section summarize the access modes and access targets allowed. 

Placeholder accessors are those created independent of a command group and then later associated 

with a particular memory object. Designation of a placeholder accessor is communicated via the 

placeholder argument set to access::placeholder::true_t if so and access::placeholder::false_t otherwise. 

Once an accessor is created, query member functions to review accessor information. These member 

functions include: 

• is_placeholder – return true if accessor is a placeholder, not yet associated with a memory object, 

false otherwise 

• get_size – obtain the size (in bytes) of the memory object 

• get_count – obtain the number of elements of the memory object 

• get_range – obtain the range of the memory object, where range is a range class  

• get_offset – obtain the offset of the memory object 

An accessor can reference a subset of a memory object; this is the offset of the accessor into the 

memory object.  

https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
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4.3.2 Atomic 
The DPC++ atomic class encapsulates operations and member functions to guarantee synchronized 

access to data values. Construction of an atomic object requires a reference to a multi_ptr. A multi_ptr is 

an abstraction on top of a low-level pointer that enables efficient access across the host and devices. 

The atomic member functions are modeled after the C++ standard atomic functions. They are 

documented more fully in the SYCL Specification and include the following: 

• Store – store a value 

• Load – load a value 

• Exchange – swap two values 

• Compare_exchange_strong - compares two values for equality and exchanges based on result 

• Fetch_add – add a value to the value pointed to by a multi_ptr 

• Fetch_sub - subtract a value from the value pointed to by a multi_ptr 

• Fetch_and – bitwise and a value from the value pointed to by a multi_ptr 

• Fetch_or - bitwise or a value from the value pointed to by a multi_ptr 

• Fetch_xor - bitwise xor a value from the value pointed to by a multi_ptr 

• Fetch_min – compute the minimum between a value and the value pointed to by a multi_ptr 

• Fetch_max - compute the maximum between a value and the value pointed to by a multi_ptr 

In addition to the member functions above, a set of functions with the same capabilities are available 

acting on atomic types. These functions are similarly named with the addition of “atomic_” prepended.  

4.3.3 Buffer 
A DPC++ buffer encapsulates a 1-, 2-, or 3-dimensional array that is shared between host and devices. 

Creating a buffer requires the number of dimensions of the array as well as the type of the underlying 

data.  

The class contains multiple constructors with different combinations of ranges, allocators, and property 

lists.  

• The memory employed by the buffer is already existing in host memory.  In this case, a pointer to 

the memory is passed to the constructor.  

• Temporary memory is allocated for the buffer by employing the constructors that do not include a 

hostData parameter.  

• An allocator object is passed, which provides an alternative memory allocator to be used for 

allocating the temporary memory for the buffer. Special arguments, termed properties, can be 

provided to the constructor for cases where host memory use is desired (use_host_ptr), use of the 

mutex_class is desired (use_mutex), and single context only (context_bound) is desired. 

Once a buffer is allocated, query member functions to learn more. These member functions include: 

• get_range – obtain the range object associated with the buffer 

• get_count – obtain the number of elements in the buffer 

• get_size – obtain the size of the buffer in bytes 

• get_allocator – obtain the allocator that was provided in creating the buffer 

• is_sub_buffer – return if buffer is a sub-buffer or not 
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4.3.4 Command Group Handler 
The command group handler class encapsulates the actions of the command group, namely the 

marshalling of data and launching of the kernels on the devices.  

There are no user callable constructors; construction is accomplished by the oneAPI runtime. Consider 

the example code below: 

1    d_queue.submit([&](sycl::handler &cgh) { 

2      auto c_res = 

c_device.get_access<sycl::access::mode::write>(cgh);  

3      cgh.parallel_for<class ex1>(a_size,[=](sycl::id<1> idx) { 

4        c_res[idx] =0; 

5      });  

6    }); 

 

In the example, the accessor, c_res, is obtained from the device and takes a command group handler as 

a parameter, in this case cgh. The kernel dispatch itself is a member function of the command group 

handler. In this case, a parallel_for is called. The kernel dispatch API has multiple calls including 

parallel_for, parallel_for_work_group, and single_task. 

There is a set_args function employed for passing arguments to an OpenCL™ kernel for interoperability. 

4.3.5 Context 
A context encapsulates a platform and a collection of devices. For more information, see the Platform 

Model section.  

The class contains multiple constructors enabling creation from platforms, devices, and context as 

arguments.  

The class contains member functions for querying information about the instantiated context: 

• get_platform() – obtain the platform associated with the context 

• get_device() – obtain the device associated with the context 

• is_host() – return true if context is a host context 

4.3.6 Device 
The device class represents the capabilities of the accelerators in a system, as detailed in the Execution 

Model section. The class contains member functions for constructing devices and obtaining information 

about the device. One form of constructor requires zero arguments. The constructor can also take a 

device selector argument that chooses which type of accelerator to employ, such as CPU, GPU, or FPGA. 

Lastly, construction can be via OpenCL software technology by code using cl_device_id for 

interoperability. 

The device class contains member functions for querying information about the device, which is useful 

for DPC++ programs where multiple devices are created. Some calls return basic information such as 

is_host(), is_cpu(), is_gpu(). For more detailed information, the function get_info sets a series of 

attributes with pertinent information about the device including: 
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• The local and global work item IDs 

• The preferred width for built in types, native ISA types, and clock frequency 

• Cache width and sizes 

• Device support attributes, such as unified memory support, endianness, and (if the device is online) 

compiler capable 

• Name, vendor, and version of the device 

4.3.7 Device Event 
The DPC++ device_event class encapsulates wait objects within kernels. The device_event objects are 

used to coordinate asynchronous operations in kernels. The constructor and its arguments are 

unspecified and implementation dependent. The wait member function causes execution to stop until 

the operation associated with the wait is complete.  

4.3.8 Device Selector 
The DPC++ device_selector class enables the runtime selection of a particular device to execute kernels 

based upon user-provided heuristics. Construction is either via a zero argument constructor or by 

providing a reference to another device_selector object. An instance of a device_selector can also be 

assigned to another instance.  

The following code sample shows use of the standard device_selectors and a derived device_selector 

that employs a device selector heuristic. In the example, the selected device prioritizes a CPU device 

because the integer rating returned is higher than if the device is a GPU or other accelerator.  

1   #include <CL/sycl.hpp> 

2   using namespace cl::sycl; 

3   

4   class my_device_selector : public device_selector { 

5   public: 

6     int operator()(const device &dev) const override{ 

7       int rating = 0; 

8       if (dev.is_gpu()) rating = 1; 

9       else if (dev.is_cpu()) rating = 2; 

10       return rating;  

11   }; 

12 }; 

13 int main() { 

14   

15   default_selector d_selector; 

16   queue Queue(d_selector); 

17   

18   cpu_selector d_selector2; 

19   queue Queue2(d_selector2); 

20   

21   std::cout << "Executing on " 

22     << Queue.get_device().get_info<info::device::name>() 
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23     << std::endl; 

24   std::cout << "Executing on " 

25     << Queue2.get_device().get_info<info::device::name>() 

26     << std::endl; 

27   

28   device device1 = Queue.get_device() ; 

29   device device2 = Queue2.get_device() ; 

30   

31   my_device_selector h_selector; 

32   queue Queue3(h_selector); 

33   

34   std::cout << "Executing on " 

35     << Queue3.get_device().get_info<info::device::name>() 

36     << std::endl; 

37   

38   return 0; 

39 }  

A brief description of the key lines in the sample code is as follows:  

• Lines 15-16 - use the default_selector to select a device to initialize a command queue  

 
• Lines 18-19 - use the cpu_selector to select a device to initialize a command queue 

  
• Lines 4-11 and lines 31-32 - use a derived device_selector and a selection heuristic 
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4.3.9 Event 
The event class encapsulates the cl_event from the OpenCL standard and is employed primarily for 

interoperability. 

4.3.10 Exception 
The DPC++ exception class encapsulates objects to communicate error conditions from the DPC++ 

program. Errors during DPC++ program execution are either scheduling or device related.  

Execution between host and device is asynchronous in nature, therefore any events or errors are 

asynchronous. To catch exceptions that occur on the device, employ an asynch_handler, which is 

provided during command queue construction. During execution of the kernel, if any exceptions occur, 

these are placed on the async_handler list for processing once the command group function returns 

and the host handles the exceptions through the async_handler list. The exception_ptr_class is used to 

store the exception and can contain exceptions representing different types of errors such as 

device_error_ compile_program_error, link_program_error, invalid_object_error, 

memory_allocation_error, platform_error, profiling_error, and feature_not_supported.  

4.3.11 Group 
The group class encapsulates work-group functionality. Constructors are not user-callable; objects are 

created as a by-product of a call to parallel_for_work_group.  

Once a group object has been instantiated, query various properties of the object by calling several 

member functions including: 

• get_id – obtains the index of the work-group 

• get_global_range – obtain a range that represents the work-items across the index space  

• get_local_range – obtain a range that represents the work-items in a work-group 

• get_group_range – obtain a range representing the dimensions of the current work-group 

• get_linear_id – obtain a linear version of the work-group id  

Definitions of global range and local range are in the SYCL Specification glossary. In brief, a global range 

is the overall number of work-items in the index space. A local range is the number of work-items in a 

work-group. 

4.3.12 ID 
The id class encapsulates a vector of dimensions that identify an index into a global or local range. 

Constructors for the class take one to three integer arguments representing a one, two, and three 

dimension id. Each integer argument specifies the size of the dimension. ID objects can also be 

constructed as a placeholder where the dimension is unspecified and set to zero by default. 

Construction can also be based upon the dimension of an existing range or item.  

The class supports operations such as + (plus), - (minus), and many more. Consult the SYCL 

specification for complete details. 
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4.3.13 Image 
A DPC++ image encapsulates a 1-, 2-, or 3-dimensional set of data shared between host and devices. 

Creating an image requires the number of dimensions of the array as well as the order and type of the 

underlying data.  

The class contains multiple constructors with different combinations of orders, types, ranges, 

allocators, and property lists.  

• The memory employed by the image is already existing host memory. In this case, a pointer to the 

memory is passed to the constructor.  

• Temporary memory is allocated for the image by employing the constructors that do not include a 

hostPointer parameter.  

• An allocator object is passed, which provides an alternative memory allocator to be used for 

allocating the temporary memory for the buffer.  

• When host memory use is desired (use_host_ptr), use of the mutex_class is desired (use_mutex), 

and if a single context only (context_bound) is desired, special arguments, termed properties, are 

provided to the constructor. 

Once a buffer is allocated, query member functions to learn more. These member functions include 

• get_range – obtain the range object associated with the image 

• get_pitch - obtain the range associated with a one-dimensional image 

• get_count – obtain the number of elements in the image 

• get_size – obtain the size of the image (in bytes) 

• get_allocator – obtain the allocator that was provided in creating the image 

• get_access – obtain an accessor to the image with the specified access mode and target 

4.3.14 Item 
A DPC++ item encapsulates a function object executing on an individual data point in a DPC++ range. 

When a kernel is executed, it is associated with an individual item in a range and acts upon it. This 

association is accomplished implicitly, by the runtime. Therefore, there are no user callable 

constructors; a DPC++ item is created when a kernel is instantiated. 

The member functions of the item class pertain to determining the relationship between the item and 

the enclosing range: 

• get_id – obtain the position of the work item in the iteration space 

• get_range – obtain the range associated with the item 

• get_offset – obtain the position of the item in the n-dimensional space 

• get_linear_id – obtain the position of the item converting the n-dimensional space into one 

4.3.15 Kernel 
The DPC++ kernel class encapsulates methods and data for executing code on the device when a 

command group is instantiated. In many cases, the runtime creates the kernel objects when a command 

queue is instantiated.  

Typically, a kernel object is not explicitly constructed by the user; instead it is constructed when a 

kernel dispatch function, such as parallel_for, is called. The sole case where a kernel object is 
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constructed is when constructing a kernel object from an OpenCL application’s cl_kernel. To compile 

the kernel ahead of time for use by the command queue, use the program class. 

Member functions of the class return related objects and attributes regarding the kernel object 

including: 

• get – obtains a cl_kernel if associated 

• Is_host – obtains if the kernel is for the host 

• get_context – obtains the context to which the kernel is associated 

• get_program – obtains the program the kernel is contained in 

• get_info – obtain details on the kernel and return in info::kernel_info descriptor 

• get_work_group_info – obtain details on the work group and return in info::kernel_work_group 

descriptor 

The get_info member function obtains kernel information such as function_name, num_args, context, 

program, reference_count, and attributes. 

4.3.16 Multi-pointer 
The DPC++ multi-pointer class encapsulates lower level pointers that point to abstract device memory.  

Constructors for the multi-pointer class enable explicit mention of the address space of the memory. 

The following lists the address space with the appropriate identifier:   

• Global memory – global_space 

• Local memory – local_space 

• Constant memory – constant_space 

• Private memory – private_space 

The constructors can also be called in an unqualified fashion for cases where the location will be known 

later. 

Member functions include standard pointer operations such as ++ (increment), -- (decrement), + (plus), 

and – (minus). A prefetch function is also specified to aid in optimization and is implementation defined. 

Conversion operations are also available to convert between the raw underlying pointer and an OpenCL 

program’s C pointer for interoperability. Consult the SYCL specification for complete details. 

4.3.17 Nd_item 
A DPC++ nd_item encapsulates a function object executing on an individual data point in a DPC++ 

nd_range. When a kernel is executed, it is associated with an individual item in a range and acts upon it. 

This association is accomplished implicitly, by the runtime. Therefore, there are no user callable 

constructors; a DPC++ nd_item is created when a kernel is instantiated.  

The member functions of the nd_item class pertain to determining the relationship between the 

nd_item and the enclosing range: 

• get_global_id – obtain the position of the work item in the iteration space 

• get_global_linear_id – obtain the position of the work item in a linear representation of the global 

iteration space 

• get_local_id – obtain the position of the item in the current work-group 
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• get_local_linear_id – obtain the position of the item in a linear representation of the current work-

group 

• get_group – obtain the position of the item in the overall nd_range 

• get_group_range – obtain the number of work-groups in the iteration space 

• get_global_range – obtain the range representing the dimensions of the global iteration space 

• get_local_range – obtain the range representing the dimension of the current work-group 

• get_offset – obtain an id that represents the offset between a work-item representation between 

local and global iteration space 

• get_nd_range – obtain the nd_range from the nd_item 

The class also includes a member function, async_work_group_copy, which can copy a range of items 

asynchronously. 

4.3.18 Nd_range 
The DPC++ nd_range class encapsulates the iteration domain of the work-groups and kernel dispatch. 

It is the entire iteration space of data that a kernel may operation upon. The constructor for an 

nd_range object take the global range, local range, and an optional offset.  

Member functions include: 

• get_global_range – obtain the global range 

• get_local_range – obtain the local range 

• get_group_range – obtain the number of groups in each dimension of the nd_range 

• get_offset – obtain the offset 

4.3.19 Platform 
The DPC++ platform class encapsulates the host and device functionality employed by a DPC++ 

program.  

The constructors either construct a host platform, or for backwards compatibility, an OpenCL platform. 

One version of the constructor takes a device_selector object employed to choose the particular device 

for execution. 

Member functions for the platform class include: 

• get – obtain an OpenCL platform from the platform  

• get_info – obtain information on the platform 

• has_extension – query the platform for specific support of an extension 

• Is_host – is the platform a host platform 

• get_devices – return all devices associated with the platform 

The member function get_info returns specific information as a string about the platform, including: 

• Profile – returns if platform supports for full or embedded profile 

• Version – returns version number information 

• Name – returns the name of the platform 

• Vendor – returns the vendor of the platform 

• Extensions – returns a vector of strings that list the supported extensions 
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4.3.20 Program 
A DPC++ program class encapsulates a program, either a host program or an OpenCL program. The 

program object is employed when compilation or linkage of the program is desired.  

Constructors for a program object require a context at a minimum.  

Member functions of the program class include: 

• get – obtain an OpenCL program object from the program 

• is_host – determines if the program is targeted for the host 

• compile_with_kernel_type – enables compilation of a kernel 

• compile_with_source – compiles OpenCL kernel 

• build_with_kernel_type – builds kernel function 

• build_with_source – builds kernel function from source 

• link – link the object files  

• has_kernel – determines if the program has a valid kernel function 

• get_kernel – obtains the kernel from the program 

• get_binaries – obtain a vector of compiled binaries for each device in the program 

• get_context – obtain the context the program was built with 

• get_devices – obtain a vector of the compiled binary sizes for each device 

4.3.21 Queue 
A DPC++ queue is employed to schedule and execute the command queues on the devices.  

Multiple forms of constructors are available with different combinations of arguments, including device 

selectors, devices, contexts, and command queue. In addition, an asyc_handler can be passed to help 

communicate errors from the devices back to the host.  

The command queue itself executes in a synchronous fashion and therefore errors are also 

synchronous in nature. The actual kernels execute asynchronous and therefore errors are handled 

asynchronously by the async_handler. Queues can synchronize by calling wait and 

wait_and_throw_throw member functions. 

Command groups are submitted to the queue object using the submit member function.  

A property_list can also be passed during construction, which can be used to communicate an 

enable_profiling property to the devices.  

A description of a few other member functions include: 

• get – obtain a cl_command_queue  

• get_context – obtain the context associated with the queue 

• get_device – obtain the device associated with the queue 

• is_host – return if the queue is executing on the host   

4.3.22 Range 
The DPC++ range class encapsulates the iteration domain of a work-group or the entire kernel dispatch. 

Constructors for a range object take one, two, or three arguments of size_t dependent on the 

dimensionality of the range, either one, two, or three dimensions respectively.  
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Member functions include: 

• get – obtain the specified dimension  

• size – obtain the size of the range 

Additional functions allow construction of new ranges from old ranges with additional operations on 

the range. For example: 

 Range<2> +() const?? 

4.3.23 Stream 
The DPC++ stream class is employed for outputting values of SYCL built-in, vector, and other types to 

the console.   

4.3.24 Vec and Swizzled Vec 
The DPC++ Vec and Swizzled Vec class templates are designed to represent vectors between host and 

devices. 

To instantiate a vec class template, provide the type and an integer representing the number of 

elements. The number of elements can be 1, 2, 3, 4, 8, or 16; any other integer results in a compile error. 

The type provided must be a basic scalar type, such as int or float. 

Member functions once an object is created include: 

• get_count – obtains the number of elements of the vec 

• get_size – obtain the size of the vec (in bytes) 

• lo – obtain the lower half of the vec 

• hi – obtain the higher half of the vec 

• odd – obtain the odd index elements of the vec 

• even – obtain the even index elements of the vec 

• load – copy the pointed to values into a vec 

• store – copy the vec into the pointed to location 

The __swizzled_vec__ class is employed to reposition elements of a vec object. A good motivation for 

employing is to obtain every odd or even element of a vector. In this case, employ the odd or even 

member function of the class. There are member functions associated with the __swizzled_vec__ class 

for converting a vec into a new vec such as one in RGBA format. 

Various operators on the vec class include: +=, -=, *=, /=, %=, ++, --, &, |, ^, +, -, *, /, %, &&, ||, <<, >>, 

<<=, >>=, ==, !=, <, >, <=, >=. 

4.3.25 Built-in Types & Functions 
The DPC++ built-in functions provide low level capabilities that can execute on the host and device with 

some level of compatibility. Section 4.13 details all the various built-in types and functions available.  

One task taken care of by the implementation is the mapping of C++ fundamental types such as int, 

short, long such that the types agree between the host and the device. 
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The built-in scalar data types are summarized in the SYCL Specification. In general, the built-in types 

cover floating point, double, half precision, char, signed char, unsigned char, short, unsigned short, int, 

unsigned int, long, unsigned long, long long, unsigned long long, and signed integer. Lastly, the built-in 

types can be post fixed with 2, 3, 4, 8, or 16, which indicated a vector of the post fixed type. For 

example, float3 indicates a type consisting of three floating point elements addressed as one object. 

A float3 is common in image processing algorithms for representing RGB data.  

The built-in functions are either defined as part of lower level classes or part of the basic math 

functions. These built-in functions enable vendors to provide differentiated built-in functions specific to 

the architecture while also enabling basic functionality for generic implementations. 

The categories of built-in functions are summarized as: 

• Work-item functions – pertaining to nd_item and group classes 

• Basic Math functions – low level math and comparison functions 

• General math functions – Transcendental, trigonomic, and geometric functions 

• Vector load and store – reading and writing vec class 

• Synchronization – nd_item related barriers 

• Output – stream class for output  

4.3.26 Property Interface 
The DPC++ property interface is employed with the buffer, image, and queue classes to provide extra 

information to those classes without affecting the type. These classes provide an additional 

has_property and get_property member function to test for and obtain a particular property. 

4.3.27 Standard Library Classes Required for the Interface 
Programming for oneAPI employs a variety of vectors, strings, functions, and pointer objects common 

in STL programming.  

The SYCL specification documents a facility to enable vendors to provide custom optimized 

implementations. Implementations require aliases for several STL interfaces. These are summarized as 

follows: 

• vector_class – std::vector<> 

• string_class – std::string 

• function_class – std::function<> 

• mutex_class – std::mutex 

• shared_ptr_class – std::shared_ptr<> 

• unique_ptr_class – std::unique_ptr<> 

• weak_ptr_class – std::weak_ptr<> 

• hash_class – std::hash 

• exception_ptr_class – std::exception_ptr 

4.3.28 Version 
The include file, version.h, includes a definition of __SYCL_COMPILER_VERSION based upon the date of 

the compiler. It can be used to control compilation based upon specific version of the compiler. 
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4.4 Memory Types 
Memory Type Description 

Constant Memory A region of global memory that remains constant 

during the execution of a kernel. The host 

allocates and initializes memory objects placed 

into constant memory. 

Global Memory Accessible to all work-items in all work-groups. 

Read/write, may be cached, persistent across 

kernel invocations. 

Local Memory Shared between work-items in a single work-

group and inaccessible to work-items in other 

work-groups. Example: Shared local memory on 

Intel HD Graphics 530 

Private Memory A region of memory private to a work-item. 

Variables defined in one work-item’s private 

memory are not visible to another work-item. 

Example: Register File on Intel HD Graphics 530 

 

4.5 Keywords 
One of the design goals of DPC++ and SYCL is to not add keywords to the language. The motivation is 

to enable easier compiler vendor adoption. Whereas OpenCL C code and other accelerator-targeted 

languages require proprietary keywords, DPC++ does not.  

4.6 Preprocessor Directives and Macros 
Standard C++ preprocessing directives and macros are supported by the compiler. In addition, the SYCL 

Specification defines the SYCL specific preprocessor directives and macros.  

The following preprocessor directives and macros are supported by the compiler. 

Directive Description 

SYCL_DUMP_IMAGES If true, instructs runtime to dump 

the device image 

SYCL_USE_KERNEL_SPV=<device 

binary> 

Employ device binary to fulfill 

kernel launch request 

SYCL_PROGRAM_BUILD_OPTIONS Used to pass additional options for 

device program building.  
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5 API-based Programming 
Several libraries are available with oneAPI toolkits that can simplify the programming process by 

providing specialized APIs for use in optimized applications. This chapter provides basic details about 

the libraries, including code samples, to help guide the decision on which library is most useful in 

certain use cases. Detailed information about each library, including more about the available APIs, is 

available in the main documentation for that library. 

5.1 oneAPI Library Overview 
The following libraries are available from the oneAPI toolkits: 

 

Library Usage 

Intel oneAPI DPC++ Library Use this library for high performance parallel applications.  

Intel oneAPI Math Kernel Library  Use this library to include highly optimized and extensively 

parallelized math routines in an application. 

Intel oneAPI Threading Building 

Blocks 

Use this library to combine TBB-based parallelism on 

multicore CPUs and DPC++ device-accelerated parallelism in 

an application. 

Intel oneAPI Data Analytics 

Library 

Use this library to speed up big data analysis applications 

and distributed computation. 

Intel oneAPI Collective 

Communications Library 

Use this library for applications that focus on Deep Learning 

and Machine Learning workloads. 

Intel oneAPI Deep Neural 

Network Library  

Use this library for deep learning applications that use neural 

networks optimized for Intel Architecture Processors and 

Intel Processor Graphics. 

Intel oneAPI Video Processing 

Library  

Use this library to accelerate video processing in an 

application. 

5.2 Intel oneAPI DPC++ Library (oneDPL) 
The Intel oneAPI DPC++ Library (oneDPL) works with the Intel oneAPI DPC++ Compiler to provide high-

productivity APIs. Using these APIs can minimize DPC++ programming efforts across devices for high 

performance parallel applications. 

oneDPL consists of following components: 

• C++ standard APIs verified for DPC++ kernels 

• Parallel STL algorithms with execution policies to run on DPC++ devices   

• Non-standard API extensions 
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Currently, Parallel STL has been integrated into oneDPL. Non-standard API extensions are planned for 

gradual integration in future releases. The testing results of C++ standard APIs on devices and the 

supported Parallel STL and non-standard API extensions are posted in the oneDPL Release Notes. 

For more information, see the Intel oneAPI DPC++ Library Guide. 

5.2.1 oneDPL Library Usage 
oneDPL is a component of the Intel® oneAPI Base Toolkit.  

Several C++ standard APIs have been tested and function well within DPC++ kernels. To use them, 

include the corresponding C++ standard header files and use the std namespace. 

To use Parallel STL and non-standard API extensions, include necessary header files in the source code. 

All oneDPL header files are in the dpstd directory. Use #include <dpstd/…> to include them.  

oneDPL has its own namespace dpstd for all its extensions, including DPC++ execution policies, non-

standard algorithms, special iterators, etc.  

To build the code using Parallel STL algorithms, set up environment variables for the Intel oneAPI 

DPC++ Compiler, Intel oneAPI Threading Building Blocks, and Parallel STL. For details, see Get Started 

with Parallel STL. 

5.2.2 oneDPL Code Samples 
Parallel STL for DPC++ extends the standard C++17 parallel algorithms with 

• DPC++ execution policy 

• dpstd::begin, dpstd::end functions 

To compile the code samples: 

1. Set the environment variables.  

2. Run the following command: dpcpp test.cpp -o test 

5.2.2.1 DPC++ Execution Policy  

The DPC++ execution policy specifies where and how a Parallel STL algorithm runs. It encapsulates a 

standard C++ 17 execution policy by inheritance (currently, only parallel_unsequenced_policy is 

supported), a SYCL device or queue, and an optional kernel name.  

To set up the policy:  

1. Add #include <dpstd/execution>. 

2. Create a policy object providing a standard policy type and a special class (a unique kernel name; it 

is optional if the host code to invoke the kernel is compiled with the Intel oneAPI DPC++ Compiler) 

as template arguments and one of the following constructor arguments:  

⎯ A SYCL queue 

⎯ A SYCL device 

⎯ A SYCL device selector 

⎯ An existing policy providing a new kernel name 

1  using namespace dpstd::execution; 

https://software.intel.com/en-us/oneapi-dpcpp-library-guide
https://software.intel.com/en-us/articles/get-started-with-parallel-stl
https://software.intel.com/en-us/articles/get-started-with-parallel-stl
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2  auto policy_a = sycl_policy<parallel_unsequenced_policy, class 

PolicyA> {cl::sycl::queue{ }}; 

3  std::for_each(policy_a, ...); 

4  auto policy_b = sycl_policy<parallel_unsequenced_policy, class 

PolicyB> {cl::sycl::device{cl::sycl::gpu_selector{}}}; 

5  std::for_each(policy_b, ...); 

6  auto policy_c = sycl_policy<parallel_unsequenced_policy, class 

PolicyC> {cl::sycl::default_selector{}}; 

7  std::for_each(policy_c, ...); 

8  auto policy_d = make_sycl_policy<class PolicyD>(sycl); // sycl is 

predefined object of sycl_policy class using default kernel name 

9  std::for_each(policy_d, ...); 

10 auto policy_e = make_sycl_policy<class PolicyE>(cl::sycl::queue{}); 

11 std::for_each(policy_e, ...); 

5.2.2.2 dpstd::begin, dpstd::end Functions 

dpstd::begin, dpstd::end are special helper functions that allow passing of SYCL buffers to 

Parallel STL algorithms. These functions accept a SYCL buffer and return an object of an unspecified 

type that satisfies the following requirements: 

1. Is CopyConstructible, CopyAssignable, and comparable with operators == and != 

2. The following expressions are valid: a + n, a - n, –a - b, where a and b are objects of the type, and n 

is an integer value 

3. Contains get_buffer() method that returns the SYCL buffer passed to dpstd::begin, 

dpstd::end functions. 

To use the functions, add #include <dpstd/iterators.h> to your code. 

The following example shows how to process a SYCL buffer with a Parallel STL algorithm: 

1  #include <CL/sycl.hpp> 

2  #include <dpstd/execution> 

3  #include <dpstd/algorithm> 

4  #include <dpstd/iterators.h> 

5  int main(){ 

6     cl::sycl::queue q; 

7     cl::sycl::buffer<int> buf { 1000 }; 

8     auto buf_begin = dpstd::begin(buf); 

9     auto buf_end   = dpstd::end(buf); 

10     auto policy = dpstd::execution::make_sycl_policy<class 

fill>(q); 

11     std::fill(policy, buf_begin, buf_end, 42); 

12     return 0; 

13 } 

NOTE: Parallel STL algorithms can be called with ordinary (host-side) iterators, as in the code below. In that 

case, a temporary SYCL buffer is created and the data is copied to this buffer. After the processing of 
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the temporary buffer on a device is complete, the data is copied back to the host. Working with SYCL 

buffers is recommended to reduce data copying between host and device. 

1  #include <vector> 

2  #include <dpstd/execution> 

3  #include <dpstd/algorithm> 

4  int main(){ 

5     std::vector<int> vec( 1000000 ); 

6     auto policy = dpstd::execution::make_sycl_policy< 

7      class fill>(dpstd::execution::sycl); 

8     std::fill(policy, vec.begin(), vec.end(), 42); 

9  // each element of vec will be equal to 42 

10     return 0; 

11 } 

5.2.2.3 Verified C++ Standard API 

Several C++ Standard APIs can be employed in device kernels similar to how they are employed in code 

for a typical CPU-based platform. The following code demonstrates such use for std::swap function: 

1  #include <CL/sycl.hpp> 

2  #include <utility> 

3  #include <iostream> 

4  constexpr cl::sycl::access::mode sycl_read_write, 

5    cl::sycl::access::mode::read_write; 

6  class KernelSwap; 

7  void kernel_test() {  

8    cl::sycl::queue deviceQueue; 

9    cl::sycl::range<1> numOfItems{2}; 

10    cl::sycl::cl_int swap_num[2] = {4, 5}; 

11    std::cout << swap_num[0] << ", " << swap_num[1] << std::endl; 

12    { 

13      cl::sycl::buffer<cl::sycl::cl_int, 1> 

14        swap_buffer(swap_num, numOfItems); 

15      deviceQueue.submit([&](cl::sycl::handler &cgh) { 

16        auto swap_accessor = swap_buffer.get_access< 

17          sycl_read_write>(cgh); 

18        cgh.single_task<class KernelSwap>([=]() { 

19       int & num1 = swap_accessor[0]; 

20       int & num2 = swap_accessor[1]; 

21       std::swap(num1, num2); 

22        }); 

23      }); 

24    } 

25      std::cout << swap_num[0] << ", " << swap_num[1] << std::endl; 

26  } 

27  int main() { 
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28    kernel_test(); 

29    return 0; 

30  } 

5.3 Intel oneAPI Math Kernel Library (oneMKL) 
 

The Intel oneAPI Math Kernel Library (oneMKL) is a computing math library of highly optimized and 

extensively parallelized routines for applications that require maximum performance.  oneMKL contains 

the high-performance optimizations from the full Intel® Math Kernel Library for CPU architectures (with 

C/Fortran programming language interfaces) and adds to them a set of Data Parallel C++ (DPC++) 

programming language interfaces for achieving performance on various CPU architectures and Intel 

Graphics Technology for certain key functionalities. 

The new DPC++ interfaces with optimizations for CPU and GPU architectures have been added for key 

functionality in the following major areas of computation: 

• BLAS and LAPACK dense linear algebra routines  

• Sparse BLAS sparse linear algebra routines 

• Random number generators (RNG) 

• Vector Mathematics (VM) routines for optimized mathematical operations on vectors 

• Fast Fourier Transforms (FFTs) 

For more information, see Get Started with Intel oneAPI Math Kernel Library for Data Parallel C++. 

5.3.1 oneMKL Usage 
When using the DPC++ programming language interfaces, there are a few changes to consider:   

• oneMKL has a dependency on the Intel oneAPI DPC++ Compiler and Intel oneAPI DPC++ Library. 

Applications must be built with the Intel oneAPI DPC++ Compiler, the DPC++ headers made 

available, and the application linked with oneMKL using the DPC++ linker.  

• DPC++ interfaces in oneMKL use cl::sycl::buffer objects for input data (vectors, matrices, 

etc.). 

• Some DPC++ interfaces in oneMKL support the use of Unified Shared Memory (USM) pointers for 

input data in place of the cl::sycl::buffer objects.  

• DPC++ interfaces in oneMKL are overloaded based on the floating point types. For example, there 

are several general matrix multiply APIs, accepting single precision real arguments (float), double 

precision real arguments (double), half precision real arguments (half), and complex arguments of 

different precision using the standard library types std::complex<float>, 

std::complex<double>. 

• A two-level namespace structure for oneMKL is added for DPC++ interfaces: 

Namespace Description 

mkl Contains common elements between various domains in oneMKL 

https://software.intel.com/en-us/get-started-with-mkl-for-dpcpp
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mkl::blas Contains dense vector-vector, matrix-vector, and matrix-matrix low 

level operations 

mkl::lapack Contains higher-level dense matrix operations like matrix 

factorizations and eigensolvers 

mkl::rng Contains random number generators for various probability density 

functions 

mkl::vm Contains vector math routines 

mkl::dft Contains fast fourier transform operations 

mkl::sparse Contains sparse matrix operations like sparse matrix-vector 

multiplication and sparse triangular solver 

5.3.2 oneMKL Code Sample 
To demonstrate a typical workflow for the oneMKL with DPC++ interfaces, the following example 

source code snippets perform a double precision matrix-matrix multiplication on a GPU device.  

1 // standard SYCL header 

2 #include <CL/sycl.hpp> 

3  

4 // include std::exception class 

5 #include <exception> 

6  

7 // declarations for Intel oneAPI Math Kernel Library SYCL apis 

8 #include "mkl_sycl.hpp" 

9  

10 int main(int argc, char *argv[]) { 

11  // 

12  // User obtain data for A,B,C matrices along with setting m,n,k, 

ldA, ldB, ldC. 

13  // 

14  // A, B and C should be stored in containers like std::vector that 

contain a  

15  // data() and size() member function 

16  // 

17  

18  // create gpu device  

19  cl::sycl::device my_device; 

20  try { 

21   my_device = cl::sycl::device(cl::sycl::gpu_selector()); 

22  } 

23  catch (...) { 

24   std::cout << "Warning, gpu device not found! Defaulting back to 

host device from default constructor. " << std::endl; 
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25  } 

26  

27  // create asynchronous exceptions handler to be attached to queue 

28  auto my_exception_handler = [](cl::sycl::exception_list exceptions) 

{ 

29   for (std::exception_ptr const& e : exceptions) { 

30    try { 

31     std::rethrow_exception(e); 

32    } 

33    catch (cl::sycl::exception const& e) { 

34     std::cout << "Caught asynchronous SYCL exception:\n" 

35      << e.what() << std::endl; 

36    } 

37    catch (std::exception const& e) { 

38     std::cout << "Caught asynchronous STL exception:\n" 

39      << e.what() << std::endl; 

40    } 

41   } 

42  }; 

43  

44  // create execution queue on my gpu device with exception handler 

attached 

45  cl::sycl::queue my_queue(my_device, my_exception_handler); 

46  

47  // create sycl buffers of matrix data for offloading between device 

and host 

48  cl::sycl::buffer<double, 1> A_buffer(A.data(), A.size()); 

49  cl::sycl::buffer<double, 1> B_buffer(B.data(), B.size()); 

50  cl::sycl::buffer<double, 1> C_buffer(C.data(), C.size()); 

51  

52  // add mkl::blas::gemm to execution queue and catch any synchronous 

exceptions 

53  try { 

54   mkl::blas::gemm(my_queue, mkl::transpose::nontrans, 

mkl::transpose::nontrans, m, n, k, alpha, A_buffer, ldA, B_buffer, 

ldB, beta, C_buffer, ldC); 

55  } 

56  catch (cl::sycl::exception const& e) { 

57   std::cout << "\t\tCaught synchronous SYCL exception during 

GEMM:\n" 

58    << e.what() << std::endl; 

59  } 

60  catch (std::exception const& e) { 

61   std::cout << "\t\tCaught synchronous STL exception during 

GEMM:\n" 

62    << e.what() << std::endl; 
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63  } 

64  

65  // ensure any asynchronous exceptions caught are handled before 

proceeding 

66  my_queue.wait_and_throw(); 

67  

68  // 

69  // post process results 

70  // 

71  

72  // Access data from C buffer and print out part of C matrix 

73  auto C_accessor = C_buffer.template 

get_access<cl::sycl::access::mode::read>(); 

74  std::cout << "\t" << C << " = [ " << C_accessor[0] << ", " 

75   << C_accessor[1] << ", ... ]\n"; 

76  std::cout << "\t    [ " << C_accessor[1 * ldC + 0] << ", " 

77   << C_accessor[1 * ldC + 1] << ",  ... ]\n"; 

78  std::cout << "\t    [ " << "... ]\n"; 

79  std::cout << std::endl; 

80  

81   

82  return 0; 

83 } 

Consider that (double precision valued) matrices A(of size m-by-k), B( of size k-by-n) and C(of size m-

by-n) are stored in some arrays on the host machine with leading dimensions ldA, ldB, and ldC, 

respectively.  Given scalars (double precision) alpha and beta, compute the matrix-matrix multiplication 

(mkl::blas::gemm): 

C = alpha * A * B + beta * C 

Include the standard SYCL headers and the oneMKL SYCL specific header that declares the desired 

mkl::blas::gemm API: 

// standard sycl header 
#include <CL/sycl.hpp> 
 
// declarations for oneAPI MKL DPC++ BLAS apis 
#include "mkl_blas_sycl.hpp"  

Next, load or instantiate the matrix data on the host machine as usual and then create the sycl device, 

create an asynchronous exception handler, and finally create the queue on the device with that 

exception handler.  Exceptions that occur on the host can be caught using standard C++ exception 

handling mechanisms; however, exceptions that occur on a device are considered asynchronous errors 

and stored in an exception list to be processed later by this user-provided exception handler. 
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// create gpu device  
cl::sycl::device my_device; 
try { 
 my_device = cl::sycl::device(cl::sycl::gpu_selector()); 
} catch (...) { 
 std::cout << "Warning, gpu device not found! Defaulting back to host device 
from default constructor. " << std::endl; 
} 
  
// create asynchronous exceptions handler to be attached to queue 
auto my_exception_handler = [](cl::sycl::exception_list exceptions) { 
 for (std::exception_ptr const& e : exceptions) { 
  try {  
   std::rethrow_exception(e);  
  } 
  catch (cl::sycl::exception const& e) { 
   std::cout << "Caught asynchronous SYCL exception:\n" 
       << e.what() << std::endl; 
  } 
 } 
}; 
  
// create execution queue on my gpu device with exception handler attached 
cl::sycl::queue my_queue(my_device, my_exception_handler);  

The matrix data is now loaded into the sycl buffers, which enables offloading to desired devices and 

then back to host when complete. Finally, the mkl::blas::gemm API is called with all the buffers, 

sizes, and transpose operations, which will enqueue the matrix multiply kernel and data onto the 

desired queue. 

 

// create sycl buffers of matrix data for offloading between device and host  
cl::sycl::buffer<double, 1> A_buffer(A.data(), A.size()); 
cl::sycl::buffer<double, 1> B_buffer(B.data(), B.size()); 
cl::sycl::buffer<double, 1> C_buffer(C.data(), C.size()); 
 
// add mkl::blas::gemm to execution queue and catch any synchronous exceptions 
try { 
 mkl::blas::gemm(my_queue, mkl::transpose::nontrans, mkl::transpose::nontrans
, m, n, k, alpha, A_buffer, ldA, B_buffer, ldB, beta, C_buffer, ldC); 
} 
catch (cl::sycl::exception const& e) { 
 std::cout << "\t\tCaught synchronous SYCL exception during GEMM:\n" 
  << e.what() << std::endl; 
}  

At some time after the gemm kernel has been enqueued, it will be executed. The queue is asked to wait 

for all kernels to execute and then pass any caught asynchronous exceptions to the exception handler 

to be thrown. The SYCL runtime will handle transfer of the buffer’s data between host and GPU device 

and back.  By the time an accessor is created for the C_buffer, the buffer data will have been silently 

transferred back to the host machine. In this case, the accessor is used to prints out a 2x2 submatrix of 

C_buffer.
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// Access data from C buffer and print out part of C matrix 
auto C_accessor = C_buffer.template get_access<cl::sycl::access::mode::read>(

); 
std::cout << "\t" << C << " = [ " << C_accessor[0]           << ", "  

        << C_accessor[1]           << ", ... ]\n";  
std::cout << "\t    [ "           << C_accessor[1 * ldC + 0] << ", "  

        << C_accessor[1*ldC + 1]   << ",  ... ]\n"; 
std::cout << "\t    [ "           << "... ]\n"; 
std::cout << std::endl; 

 

 
Note that the resulting data is still in the C_buffer object and, unless it is explicitly copied elsewhere 

(like back to the original C container), it will only remain available through accessors until the C_buffer is 

out of scope.  

5.4 Intel oneAPI Threading Building Blocks (oneTBB) 
Intel oneAPI Threading Building Blocks (oneTBB) is an open source library to write parallel C++ 

programs that take full advantage of multicore performance, are portable and composable, and have 

future-proof scalability. Through community involvement, oneTBB is a feature-rich and popular 

solution for developing shared memory parallel applications. It has been used in production for data 

analytics, creative content creation, and many other applications.  

oneTBB is compiler-independent and is available on a variety of processors and operating systems. It is 

used by other oneAPI libraries (Intel oneAPI Math Kernel Library, Intel oneAPI Deep Neural Network 

Library, etc.) to express multithreading parallelism for CPUs.  

5.4.1 oneTBB Usage 
oneTBB can be used with the Intel oneAPI DPC++ Compiler in the same way as with any other C++ 

Compiler. For more details, see the documentation at https://software.intel.com/en-us/tbb.  

Currently, oneTBB does not directly use any accelerators. However, it can be combined with the DPC++ 

language and other oneAPI libraries to build a program that efficiently utilizes all available hardware 

resources. 

5.4.2 oneTBB Code Sample 
Two basic oneTBB code samples are available from the Intel oneAPI Base Toolkit GitHub repository 

https://github.com/intel/BaseKit-code-samples. The examples are illustrative of typical use cases and 

can serve as a starting point for developers who want to experiment with using both oneTBB and 

DPC++ in the same application.  

https://software.intel.com/en-us/tbb
https://github.com/intel/BaseKit-code-samples
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5.5 Intel oneAPI Data Analytics Library (oneDAL) 
Intel oneAPI Data Analytics Library (oneDAL) is a library that helps speed up big data analysis by 

providing highly optimized algorithmic building blocks for all stages of data analytics (preprocessing, 

transformation, analysis, modeling, validation, and decision making) in batch, online, and distributed 

processing modes of computation.   

The library optimizes data ingestion along with algorithmic computation to increase throughput and 

scalability. It includes C++ and Java* APIs and connectors to popular data sources such as Spark* and 

Hadoop*. Python* wrappers for oneDAL are part of Intel Distribution for Python.  

In addition to classic features, oneDAL provides DPC++ API extensions to the traditional C++ interface 

and enables GPU usage for some algorithms.  

The library is particularly useful for distributed computation. It provides a full set of building blocks for 

distributed algorithms that are independent from any communication layer. This allows users to 

construct fast and scalable distributed applications using user-preferable communication means. 

For general information, visit the oneDAL GitHub* page. The complete list of features and 

documentation are available at the official Intel oneAPI Data Analytics Library website. Free and open-

source community-supported versions are available, as well as paid versions with premium support. 

5.5.1 oneDAL Usage 
The following dependencies are needed to build and link your application with oneDAL: 

1. Intel oneAPI DPC++ Compiler   

2. OpenCL™ Runtime 1.2 or later 

A oneDAL-based application can seamlessly execute algorithms on CPU or GPU by picking the proper 

device selector. New capabilities also allow: 

• extracting DPC++ buffers from numeric tables and pass them to a custom kernel 

• creating numeric tables from DPC++ buffers 

Algorithms are optimized to reuse DPC++ buffers to keep GPU data and remove overload from 

repeatedly copying data between GPU and CPU. 

5.5.2 oneDAL Code Sample 
The following code sample demonstrates oneDAL-specific features: 

1 #include "daal_sycl.h" 

2 #include <iostream> 

3  

4 using namespace daal; 

5 using namespace daal::algorithms; 

6 using namespace daal::data_management; 

7  

8 int main(int argc, char const *argv[]) 

9 { 

https://software.intel.com/en-us/distribution-for-python
https://github.com/intel/daal
https://software.intel.com/en-us/oneapi/dal
https://software.intel.com/en-us/get-started-with-dpcpp-compiler
https://software.intel.com/en-us/articles/opencl-drivers
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10   // Set the desired execution context 

11   cl::sycl::queue queue { cl::sycl::gpu_selector() }; 

12   services::SyclExecutionContext ctx(queue); 

13   services::Environment::getInstance()-

>setDefaultExecutionContext(ctx); 

14  

15   float input[6] = { 1.5f, 2.7f, 3.0f, 6.0f, 2.0f, 4.0f }; 

16   cl::sycl::buffer<float, 1> a { input, cl::sycl::range<1>(6) }; 

17   auto data = SyclHomogenNumericTable<>::create(a, 2, 3); 

18  

19   covariance::Batch<> algorithm; 

20   algorithm.input.set(covariance::data, data); 

21   algorithm.parameter.outputMatrixType = 

covariance::correlationMatrix; 

22   algorithm.compute(); 

23  

24   NumericTablePtr table = algorithm.getResult()-

>get(covariance::correlation); 

25  

26   // Get the DPC++ buffer from table 

27   BlockDescriptor<float> block; 

28   const size_t startRowIndex = 0; 

29   const size_t numberOfRows = table->getNumberOfRows(); 

30   table->getBlockOfRows(startRowIndex, numberOfRows, readOnly, 

block); 

31   cl::sycl::buffer<float, 1> buffer = block.getBuffer().toSycl(); 

32   table->releaseBlockOfRows(block); 

33  

34   // Printing result to the console 

35   auto accessor = 

buffer.get_access<cl::sycl::access::mode::read>(); 

36   for (int row = 0; row < table->getNumberOfRows(); row++) 

37   { 

38     for (int col = 0; col < table->getNumberOfColumns(); col++) 

39     { 

40       std::cout << accessor[row*table->getNumberOfColumns()+col] << 

", "; 

41     } 

42     std::cout << std::endl; 

43   } 

44  

45   return 0; 

46 } 

A typical command line to build a oneDAL application is: 
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dpcpp main.cpp -ldaal_core -ldaal_thread -foffload-static-

lib=$DAALROOT/lib/intel64/libdaal_sycl.a  

5.6 Intel oneAPI Collective Communications Library 

(oneCCL) 
Intel oneAPI Collective Communications Library (oneCCL) is a scalable and high-performance 

communication library for Deep Learning (DL) and Machine Learning (ML) workloads. It develops the 

ideas that originated in Intel® Machine Learning Scaling Library and expands the design and API to 

encompass new features and use cases. 

oneCCL features include: 

• Built on top of lower-level communication middleware – MPI and libfabrics 

• Optimized to drive scalability of communication patterns by enabling the productive trade-off of 

compute for communication performance 

• Enables a set of DL-specific optimizations, such as prioritization, persistent operations, out of order 

execution, etc. 

• DPC++-aware API to run across various hardware targets, such as CPUs and GPUs 

• Works across various interconnects: Intel® Omni-Path Architecture (Intel® OPA), InfiniBand*, and 

Ethernet 

5.6.1 oneCCL Usage 
Dependencies:  

• MPI 

• libfabrics 

• Intel oneAPI DPC++ Compiler  

SYCL-aware API is an optional feature of oneCCL. The choice between CPU and SYCL back ends is 

performed by specifying ccl_stream_type value when creating the oneCCL stream object. For a GPU 

backend, specify ccl_stream_sycl as the first argument. For collective operations that operate on 

SYCL stream, oneCCL expects communication buffers to be sycl::buffer objects casted to void*. 

5.6.2 oneCCL Code Sample 
oneCCL sample code, such as ccl_sample.cpp,  is available from the Intel oneAPI Base Toolkit GitHub 

repository https://github.com/intel/BaseKit-code-samples or from the Intel oneAPI DL Framework 

Developer Toolkit GitHub repository https://github.com/intel/DLFDKit-code-samples.  

Use the following command to compile the code:  

dpcpp -I$CCL_ROOT/include -L$CCL_ROOT/lib/ -lccl ./ccl_sample.cpp –o 

ccl_sample 

https://github.com/intel/BaseKit-code-samples
https://github.com/intel/DLFDKit-code-samples
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5.7 Intel oneAPI Deep Neural Network Library 

(oneDNN)  
Intel oneAPI Deep Neural Network Library (oneDNN) is an open-source performance library for deep 

learning applications. The library includes basic building blocks for neural networks optimized for Intel 

Architecture Processors and Intel Processor Graphics. oneDNN is intended for deep learning 

applications and framework developers interested in improving application performance on Intel 

Architecture Processors and Intel Processor Graphics. Deep learning practitioners should use one of the 

applications enabled with oneDNN. 

oneDNN is distributed as part of Intel® oneAPI DL Framework Developer Toolkit, the Intel oneAPI Base 

Toolkit, and is available via apt and yum channels. 

oneDNN continues to support features currently available with DNNL, including C and C++ interfaces, 

OpenMP*, Intel oneAPI Threading Building Blocks, and OpenCL™ runtimes. oneDNN introduces DPC++ 

API and runtime support for the oneAPI programming model.  

For more information, see https://github.com/intel/mkl-dnn. 

5.7.1 oneDNN Usage 
oneDNN supports systems based on Intel 64 architecture or compatible processors. A full list of 

supported CPU and graphics hardware is available from the Intel oneAPI Deep Neural Network Library 

System Requirements.  

oneDNN detects the instruction set architecture (ISA) in the runtime and uses online generation to 

deploy the code optimized for the latest supported ISA. 

Several packages are available for each operating system to ensure interoperability with CPU or GPU 

runtime libraries used by the application. 

Configuration Dependency 

cpu_dpcpp_gpu_dpcpp DPC++ runtime 

cpu_iomp OpenMP* runtime 

cpu_gomp GNU* OpenMP runtime 

cpu_vcomp Microsoft* Visual C++ OpenMP runtime 

cpu_tbb Intel oneAPI Threading Building Blocks 

The packages do not include library dependencies and these need to be resolved in the application at 

build time with oneAPI toolkits or third-party tools. 

When used in the DPC++ environment, oneDNN relies on the DPC++ runtime to interact with CPU or 

GPU hardware. oneDNN may be used with other code that uses DPC++. To do this, oneDNN provides 

API extensions to interoperate with underlying SYCL objects. 

One of the possible scenarios is executing a DPC++ kernel for a custom operation not provided by 

oneDNN. In this case, oneDNN provides all necessary APIs to seamlessly submit a kernel, sharing the 

execution context with oneDNN: using the same device and queue. 

https://github.com/intel/mkl-dnn
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The interoperability API is provided for two scenarios: 

• Construction of oneDNN objects based on existing DPC++ objects 

• Accessing DPC++ objects for existing oneDNN objects 

The mapping between oneDNN and DPC++objects is summarized in the tables below. 

oneDNN Objects DPC++ Objects 

Engine cl::sycl::device and cl::sycl::context 

Stream cl::sycl::queue 

Memory cl::sycl::buffer<uint8_t, 1> 

NOTE: Internally, library memory objects use 1D uint8_t SYCL buffers, however SYCL buffers of a different 

type can be used to initialize and access memory. In this case, buffers will be reinterpreted to the 

underlying type cl::sycl::buffer<uint8_t, 1>. 

oneDNN Object Constructing from DPC++ Object Extracting DPC++ Object 

Engine mkldnn::engine(kind, sycl_dev, 

sycl_ctx) 

mkldnn::engine::get_sycl_device() 

mkldnn::engine::get_sycl_context() 

Stream mkldnn::stream(engine, sycl_queue) mkldnn::stream::get_sycl_queue() 

Memory mkldnn::memory(memory_desc, 

engine, sycl_buf) 

mkldnn::memory::get_sycl_buffer() 

Building applications with oneDNN requires a compiler. The Intel oneAPI DPC++ Compiler is available as 

part of the Intel oneAPI Base Toolkit and the Intel C++ Compiler is available as part of the Intel oneAPI 

HPC Toolkit.  

5.7.2 oneDNN Code Sample 
oneDNN sample code is available installed with the product at 

onednn/cpu_dpcpp_gpu_dpcpp/examples/sycl_interop.cpp.  

5.8 Intel oneAPI Video Processing Library (oneVPL) 
Intel oneAPI Video Processing Library (oneVPL) provides cross platform support and vendor 

independent support for accelerated video processing. oneVPL is designed to simplify interacting with 

video content in applications where accelerators with independent storage are leveraged. 

5.8.1 oneVPL Usage  
oneVPL can use any of multiple accelerators. As a fallback it can use purely CPU based operations; 

however, to use other accelerator based hardware, the relevant drivers must be installed. Required 

drivers currently include: 

• Intel® Graphics Driver (for support of Graphics Controller) 
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The oneVPL API is defined using a classic C++ style interface, which allows the caller to select how the 

accelerator should be used at runtime. However, oneVPL is expected to be used in programs that also 

use other data parallel operations, and as such it is designed to be used in a SYCL/DPC++ program. 

The main interface between oneVPL and data parallel algorithms is the vplMemory library. vplMemory 

is used for handling frames to simplify transporting memory buffers. vplMemory provides reference 

counted buffers that can be moved between differing hardware contexts for parallel processing on 

demand. 

5.8.2 oneVPL Code Sample 
oneVPL exposes a minimal basic interface suitable for most core video processing use cases. This 

interface consists of a class that exposes three core methods: SetConfig (use for configuring options), 

GetState (use to control the main read/write loop), and DecodeFrame (use to read/write data).  

1 #include "vpl/vpl.hpp" 

2  

3 #define BUFFER_SIZE 1024 * 1024 

4  

5 int main(int argc, char* argv[]) { 

6   if (argc != 2) { 

7     printf("usage: %s [h264 input file]\n", argv[0]); 

8     printf("example: %s content/cars_1280x720.h264\n", argv[0]); 

9     return 1; 

10   } 

11  

12   // Create decoder, default device is GPU 

13   vpl::Decode decoder(VPL_FOURCC_H264); 

14  

15   // Set output color format 

16   decoder.SetConfig(VPL_PROP_DST_FORMAT, VPL_FOURCC_RGBA); 

17  

18   // Set output resolution 

19   VplVideoSurfaceResolution output_size = {352, 288}; 

20   decoder.SetConfig(VPL_PROP_OUTPUT_RESOLUTION, output_size); 

21  

22   // initialize 

23   uint8_t *pbs=new uint8_t[BUFFER_SIZE]; 

24   FILE* fInput = fopen(argv[1], "rb"); 

25   if (!fInput) { 

26     printf("could not open input file '%s'\n", argv[1]); 

27     return 1; 

28   } 

29   VplFile* fOutput = vplOpenFile("out_352x288.rgba", "wb"); 

30   vplm_mem* image = nullptr; 

31   bool bdrain_mode = false; 

32  
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33   // ----------- 

34   // MAIN LOOP 

35   // ---------- 

36  

37   // Loop until done.  Decode state of END_OF_OPERATION or 

38   // ERROR indicates loop exit. 

39   vplWorkstreamState decode_state = VPL_STATE_READ_INPUT; 

40   for (; decode_state != VPL_STATE_END_OF_OPERATION && 

41          decode_state != VPL_STATE_ERROR; 

42        decode_state = decoder.GetState()) { 

43     // read more input if state indicates buffer space 

44     // is available 

45     uint32_t bs_size = 0; 

46     if ((decode_state == VPL_STATE_READ_INPUT) && (!bdrain_mode)) { 

47       bs_size = (uint32_t)fread(pbs, 1, BUFFER_SIZE, fInput); 

48     } 

49  

50     if (bs_size == 0 || decode_state ==  

51       VPL_STATE_INPUT_BUFFER_FULL) { 

52       bdrain_mode = true; 

53     } 

54  

55     // Attempt to decode a frame. If more data is needed read again 

56     if (bdrain_mode) 

57       image = decoder.DecodeFrame(nullptr, 0); 

58     else 

59       image = decoder.DecodeFrame(pbs, bs_size); 

60     if (!image) continue; 

61  

62     // If decode resulted in a frame of output write it to file 

63     vplWriteData(fOutput, image); 

64     printf("."); 

65     fflush(stdout); 

66   } 

67   printf("\n"); 

68  

69   // cleanup 

70   fclose(fInput); 

71   vplCloseFile(fOutput); 

72   delete[] pbs; 

73   return 0; 

74 } 

To compile the code, use one of the following commands:  

• On Linux: gcc <filename> -lvpl -lvplmemory -lstdc++ 

• On Windows: cl <filename> /link vpl.lib /link vplmemory.lib 
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DecodeFrame accepts any amount of data from one byte up to the size of a large internal buffer and 

return a single frame if one can be decoded.  

The important states for normal operation are: 

State Description 

VPL_STATE_READY_FOR_INPUT Data provided will be read (input will be ignored in other 

states). 

VPL_STATE_ERROR An error has occurred. 

VPL_STATE_INPUT_BUFFER_FULL There is no room to read more input, recommendation is to 

read out frames before writing more. 

VPL_STATE_END_OF_OPERATION Indicates all available frames have been output (End of input 

was reached while the End Of Stream parameter was true.) 

5.9 Other Libraries 
Other libraries are included in various oneAPI toolkits. For more information about each of the libraries 

listed, consult the official documentation for that library.  

• Intel® Integrated Performance Primitives (IPP) 

• Intel® MPI Library 

• Intel® Open Volume Kernel Library 
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6 Software Development Process 
The software development process using the oneAPI programming model is based upon standard 

development processes. Since the programming model pertains to employing an accelerator to 

improve performance, this chapter details steps specific to that activity. These include: 

• The performance tuning cycle  

• Debugging of code  

• Migrating code that targets other accelerators 

• Composability of code 

6.1 Performance Tuning Cycle 
The goal of the performance tuning cycle is to improve the time to solution whether that be interactive 

response time or elapsed time of a batch job. In the case of a heterogeneous platform, there are 

compute cycles available on the devices that execute independently from the host. Taking advantage of 

these resources offers a performance boost.  

The performance tuning cycle includes the following steps detailed in the next sections: 

1. Establish a baseline 

2. Identify kernels to offload 

3. Offload the kernels 

4. Optimize 

5. Repeat until objectives are met 

6.1.1 Establish Baseline 
Establish a baseline that includes a metric such as elapsed time, time in a compute kernel, or floating 

point operations per second that can be used to measure the performance improvement and that 

provides a means to verify the correctness of the results.    

A simple method is to employ the chrono library routines in C++, placing timer calls before and after the 

workload executes. 

6.1.2 Identify Kernels to Offload 
To best utilize the compute cycles available on the devices of a heterogeneous platform, it is important 

to identify the tasks that are compute intensive and that can benefit from parallel execution. Consider 

an application that executes solely on a CPU, but there may be some tasks suitable to execute on a GPU. 

This can be determined using the offload performance prediction capabilities of Intel Advisor. 

Intel Advisor can create performance characterizations of the workload as it may execute on an 

accelerator. It consumes the information from profiling the workload and provides performance 

estimates, bottleneck characterization, and offload data transfer estimates. 

Typically, kernels with high compute, a large dataset, and limited memory transfers are best suited for 

offload to a device. 
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6.1.3 Offload Kernels 
After identifying kernels that are suitable for offload, employ DPC++ to offload the kernel onto the 

device. Consult the previous chapters as an information resource.  

6.1.4 Optimize 
oneAPI enables functional code that can execute on multiple accelerators; however, the code may not 

be the most optimal across the accelerators. A three-step optimization strategy is recommended to 

meet performance needs:  

1. Pursue general optimizations that apply across accelerators. 

2. Optimize aggressively for the prioritized accelerators. 

3. Optimize the host code in conjunction with step 1 and 2. 

Optimization is a process of eliminating bottlenecks, i.e. the sections of code that are taking more 

execution time relative other sections of the code. These sections could be executing on the devices or 

the host. During optimization, employ a profiling tool such as Intel VTune Profiler to find these 

bottlenecks in the code. 

This section discusses the first step of the strategy - Pursue general optimizations that apply across 

accelerators. Device specific optimizations and best practices for specific devices (step 2) and 

optimizations between the host and devices (step 3) are detailed in device-specific optimization guides, 

such as the Intel oneAPI DPC++ FPGA Optimization Guide. This section assumes that the kernel to 

offload to the accelerator is already determined. It also assumes that work will be accomplished on one 

accelerator. This guide does not speak to division of work between host and accelerator or between 

host and potentially multiple and/or different accelerators. 

General optimizations that apply across accelerators can be classified into four categories:  

1. High-level optimizations  

2. Loop-related optimizations  

3. Memory-related optimizations 

4. DPC++-specific optimizations  

The following sections summarize these optimizations only; specific details on how to code most of 

these optimizations can be found online or in commonly available code optimization literature. More 

detail is provided for the DPC++ specific optimizations. 

6.1.4.1 High-level Optimization Tips 

• Increase the amount of parallel work. More work than the number of processing elements is desired 

to help keep the processing elements more fully utilized. 

• Minimize the code size of kernels. This helps keep the kernels in the instruction cache of the 

accelerator, if the accelerator contains one. 

• Load balance kernels. Avoid significantly different execution times between kernels as the long-

running kernels may become bottlenecks and affect the throughput of the other kernels. 

• Avoid expensive functions. Avoid calling functions that have high execution times as they may 

become bottlenecks. 

https://software.intel.com/en-us/download/oneapi-fpga-optimization-guide
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6.1.4.2 Loop-related Optimizations  

• Prefer well-structured, well-formed, and simply exit condition loops – these are loops have a single 

exit and a single condition when comparing against an integer bound.  

• Prefer loops with linear indexes and constant bounds – these are loops that employ an integer 

index into an array, for example, and have bounds that are known at compile-time. 

• Declare variables in deepest scope possible. Doing so can help reduce memory or stack usage. 

• Minimize or relax loop-carried data dependencies. Loop-carried dependencies can limit 

parallelization. Remove dependencies if possible. If not, pursue techniques to maximize the 

distance between the dependency and/or keep the dependency in local memory. 

• Unroll loops with pragma unroll. 

6.1.4.3 Memory-related Optimizations 

• When possible, favor greater computation over greater memory use. The latency and bandwidth of 

memory compared to computation can become a bottleneck. 

• When possible, favor greater local and private memory use over global memory use.    

• Avoid pointer aliasing. 

• Coalesce memory accesses. Grouping memory accesses helps limit the number of individual 

memory requests and increases utilization of individual cache lines. 

• When possible, store variables and arrays in private memory for high-execution areas of code. 

• Beware of loop unrolling effects on concurrent memory accesses. 

• Avoid a write to a global that another kernel reads. Use a pipe instead. 

6.1.4.4 DPC++-specific Optimizations 

• When possible, specify a work-group size. The attribute, [[cl::reqd_work_group_size(X, Y, 

Z)]], where X, Y, and Z are integer dimension in the ND-range, can be employed to limit the 

maximum possible size. The compiler can take advantage of these limits to optimize more 

aggressively.  

• Consider use of the -Xsfp-relaxed option when possible. This option relaxes the order of 

arithmetic floating-point operations. 

• Consider use of the -Xsfpc option when possible. This option removes intermediary floating-point 

rounding operations and conversions whenever possible and carries additional bits to maintain 

precision. 

• Consider use of the -Xsno-accessor-aliasing option.  This option ignores dependencies 

between accessor arguments in a SYCL* kernel. 

6.1.5 Recompile, Run, Profile, and Repeat 
Once the code is optimized, it is important to measure the performance. The questions to be answered 

include: 

• Did the metric improve?  

• Is the performance goal met?  

• Are there any more compute cycles left that can be used?   
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Confirm the results are correct.  If you are comparing numerical results, the numbers may vary 

depending on how the compiler optimized the code or the modifications made to the code. Are any 

differences acceptable? If not, go back to optimization step. 

6.2 Debugging 
Debugging a DPC++ application can take advantage of the GDB*. The debugger is based on GDB, the 

GNU Debugger.  For full GDB documentation, see https://www.gnu.org/software/gdb/documentation/. 

6.2.1 Debugger Features 
GDB is based on GDB 8.3 with multi-target extensions that adds support for Intel accelerator targets.  It 

supports all GDB features that are applicable to the respective target and allows debugging the host 

application plus all supported devices within the same debug session. 

Device code is presented as one or more additional inferiors. Inferiors are GDB’s internal representation 

of each program execution. GDB automatically detects offloads to a supported device and creates a 

new inferior to debug device functions offloaded to that device.  This feature is implemented using 

GDB’s Python* scripting extension.  It is important that the correct -data-directory is specified when 

invoking GDB. 

The first version adds support for current Intel Graphics Technology and thus allows debugging device 

functions offloaded to Host, CPU, GPU, and FPGA emulation devices. 

GDB plugs into Eclipse on Linux* host and Microsoft* Visual Studio* on Windows* host. 

6.2.2 SIMD Support 

NOTE: This feature is only supported on GPU devices via GDB command line interface. 

The debugger enables debugging of SIMD device code.  Some commands, (for example info 

register, list, or stepping commands) operate on the underlying thread and therefore on all SIMD 

lanes at the same time.  Other commands (for example print) operate on the currently selected SIMD 

lane. 

The info threads command groups similar active SIMD lanes.  The currently selected lane, however, 

is always shown in a separate row.  If all SIMD lanes of a thread are inactive, the whole thread is marked 

as (inactive). The output appears as follows: 

 (gdb) info threads 

  Id           Target Id           Frame 

  1.1          Thread <id omitted>  <frame omitted> 

  1.2          Thread <id omitted>  <frame omitted> 

  2.1          Thread 1610612736 (inactive) 

* 2.2:1        Thread 1073741824 <frame> at array-transform.cpp:54 

  2.2:[3 5 7]  Thread 1073741824 <frame> at array-transform.cpp:54 

  2.3:[1 3 5 7] Thread 1073741888 <frame> at array-transform.cpp:54 

https://www.gnu.org/software/gdb/documentation/
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  2.4:[1 3 5 7] Thread 1073742080 <frame> at array-transform.cpp:54 

  2.5:[1 3 5 7] Thread 1073742144 <frame> at array-transform.cpp:54 

  2.6:[1 3 5 7] Thread 1073742336 <frame> at array-transform.cpp:54 

  2.7:[1 3 5 7] Thread 1073745920 <frame> at array-transform.cpp:54 

  2.8:[1 3 5 7] Thread 1073746176 <frame> at array-transform.cpp:54 

  2.9:[1 3 5 7] Thread 1073746432 <frame> at array-transform.cpp:54 […] 

When a thread stops, such as after hitting a breakpoint, the debugger chooses the SIMD lane.  Use the 

thread command to switch to a different lane. 

NOTE: SIMD lane switching is only supported via GDB command line. When stopped at a breakpoint in Visual 

Studio, GDB sets the correct SIMD lane, but there is not a way to change the lane using Visual Studio. 

The SIMD lane is specified by an optional lane number separated by ‘:’ from the thread number.  To 

switch to lane 2 of the current thread or to switch to lane 5 in thread 3 in inferior 2, use: 

(gdb) thread :2 

(gdb) thread 2.3:5 

respectively.  When not specifying a SIMD lane, GDB preserves the previously selected lane or, lacking a 

previously selected lane, chooses one.  When single-stepping a thread, the debugger also tries to 

preserve the currently selected SIMD lane. 

When using the thread apply command, the specified command is applied to all active lanes of a 

thread sequentially.  For example, the step command in thread apply is issued as many times as the 

number of active SIMD lanes in the thread. If thread 2 has three active lanes, thread apply 2 

step results in thread 2 making the step three times.   

6.2.3 Operating System Differences 
On Linux, the GDB debug engine is used to debug both the host process and all device code.  Once 

Eclipse has been configured to launch GDB, the debug experience should be similar to debugging a 

client/server application with standard GDB.  GDB (Python) scripts have access to both the host and the 

device part. 

On Windows, the Microsoft debug engine is used to debug the host process and GDB is used to debug 

the device code.  The parts are combined in Visual Studio and presented in a single debug session.  GDB 

(Python) scripts only have access to the device part. 

6.2.4 Environment Setup 
There are some required steps to set up the Linux or Windows environment for application debugging. 

Detailed instructions are available from Get Started with Debugging Data Parallel C++ for Linux OS Host 

or Get Started with Debugging Data Parallel C++ for Windows OS Host. 

https://software.intel.com/en-us/get-started-with-debugging-dpcpp-linux
https://software.intel.com/en-us/get-started-with-debugging-dpcpp-windows
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6.2.5 Breakpoints 
Unless specified otherwise, breakpoints are set for all threads in all inferiors.  GDB takes care to 

automatically insert and remove breakpoints into device code as new device modules are created and 

new device functions are launched. 

Breakpoint conditions are evaluated inside the debugger.  The use of conditional breakpoints may incur 

a noticeable performance overhead as threads may frequently be stopped and resumed again to 

evaluate the breakpoint condition. 

6.2.6 Evaluations and Data Races 
The debugger may be configured to stop all other threads in an inferior (all-stop mode) on an event or 

to leave other threads running (non-stop mode).  It does not stop other inferiors. Data that is shared 

between host and device, between two devices, or that is shared between threads (when the debugger 

is in non-stop mode) may be modified while the debugger is trying to access it, for example, in an 

expression evaluation. 

To guarantee that the debugger’s data accesses do not race with debugger accesses, all threads that 

may access that data need to be stopped for the duration of this command. 

NOTE: Non-stop mode is not supported on GPU devices. 

6.2.7 Linux Sample Session 
1 dpcpp -g -lsycl -o sample sample.cpp 

2 export SYCL_PROGRAM_BUILD_OPTIONS="-g -cl-opt-disable" 

3 gdb ./ sample 

4  

5 GNU gdb (GDB) 8.3 

6 Copyright (C) 2019 Free Software Foundation, Inc.; (C) 2019 Intel 

Corp. 

7 License GPLv3+: GNU GPL version 3 or later 

<http://gnu.org/licenses/gpl.html> 

8 This is free software: you are free to change and redistribute it. 

9 There is NO WARRANTY, to the extent permitted by law. 

10 Type "show copying" and "show warranty" for details. 

11 This GDB was configured as "x86_64-pc-linux-gnu". 

12 Type "show configuration" for configuration details. 

13  

14 For information about how to find Technical Support, Product 

Updates, 

15 User Forums, FAQs, tips and tricks, and other support information, 

please visit: 

16 <http://www.gnu.org/software/gdb/bugs/>. 

17 For help, type "help". 

18 Type "apropos word" to search for commands related to "word"... 
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19 Reading symbols from ./sample... 

20 (gdb) break 34 

21 Breakpoint 1 at 0x40da58: file sample.cpp, line 34. 

22 (gdb) run 

23 Starting program: ./sample 

24 [Thread debugging using libthread_db enabled] 

25 Using host libthread_db library "/lib/x86_64-linux-

gnu/libthread_db.so.1". 

26 [New Thread 0x7ffff5127700 (LWP 1695)] 

27  

28 Thread 1 "sample" hit Breakpoint -20, 0x00007ffff7fe7670 in 

isDebuggerActive () from libigfxdbgxchg64.so 

29 [New inferior 2] 

30 Added inferior 2 on target 1 (native) 

31 Intelgt auto-attach: a gdbserver will be attached using host`s 

inferior pid, i.e. 1695. 

32 [Switching to inferior 2 [<null>] (<noexec>)] 

33 Attached; pid = 1695 

34 Remote debugging using stdio 

35 warning: No executable has been specified and target does not 

support 

36 determining executable automatically.  Try using the "file" 

command. 

37 0x00000000ffffd020 in ?? () 

38 [Switching to inferior 1 [process 1695] (sample)] 

39 [Switching to thread 1.1 (Thread 0x7ffff7fdbec0 (LWP 1695))] 

40 #0  0x00007ffff7fe7670 in isDebuggerActive () from 

libigfxdbgxchg64.so 

41 Intelgt auto-attach: a new inferior (Num: 2) has been added and an 

Intel GT gdbserver has been created to listen to GT debug events. 

42  

43 Thread 1.1 "sample" hit Breakpoint -20, 0x00007ffff7fe7670 in 

isDebuggerActive () from libigfxdbgxchg64.so 

44 [New Thread 1073741824] 

45 Reading default.gtelf from remote target... 

46 warning: File transfers from remote targets can be slow. Use "set 

sysroot" to access files locally instead. 

47 Reading /tmp/_ZTSN2cl4sycl6kernelE.dbgelf from remote target... 

48 [New Thread 1073741840] 

49 [New Thread 1073741888] 

50 [New Thread 1073742080] 

51 [New Thread 1073742096] 

52 [New Thread 1073742144] 

53 [New Thread 1073742336] 

54 [New Thread 1073742352] 

55 [New Thread 1073742400] 
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56 [New Thread 1073745920] 

57 [New Thread 1073745936] 

58 [New Thread 1073745984] 

59 [New Thread 1073746176] 

60 [New Thread 1073746240] 

61 [New Thread 1073746432] 

62 [New Thread 1073746496] 

63 [Switching to Thread 1073741824 lane 0] 

64  

65 Thread 2.2:0 hit Breakpoint 1, 

main::$_0::operator()(cl::sycl::handler&) 

const::{lambda(cl::sycl::id<1>)#1}::operator()(cl::sycl::id<1>) 

const (this=0x0, wiID=...) at sample.cpp:34 

66 34              accessorOut[wiID] = in_elem + 100; 

67 (gdb) info inferiors 

68 Num  Description       Connection                               

Executable 

69 1    process 1695        1 (native)                               

sample 

70 * 2    Remote target     2 (remote gdbserver-gt --attach - 1695) 

71  (gdb) list 

72 29 

73 30            cgh.parallel_for<class kernel> (dataRange, [=] (id<1> 

wiID) 

74 31            { 

75 32              int dim0 = wiID[0]; 

76 33              int in_elem = accessorIn[wiID]; 

77 34              accessorOut[wiID] = in_elem + 100; 

78 35            }); 

79 36          }); 

80 37        } 

81 38 

82 (gdb) print in_elem 

83 $1 = 0 

84  (gdb) disassemble $pc, +36 

85 Dump of assembler code from 0xfffdd570 to 0xfffdd594: 

86 => 0x00000000fffdd570 <_ZTSN2cl4sycl6kernelE(int*, 

cl::sycl::range<1>, cl::sycl::range<1>, cl::sycl::id<1>, int*, 

cl::sycl::range<1>, cl::sycl::range<1>, cl::sycl::id<1>)+83312>:      

(W)      send (16|M0)             r8:uw    r75     0xA         

0x22C1103  {Breakpoint} //    wr:1h+?, rd:2, Scratch Block Read 

(2grfs from 0x103) 

87    0x00000000fffdd580 <_ZTSN2cl4sycl6kernelE(int*, 

cl::sycl::range<1>, cl::sycl::range<1>, cl::sycl::id<1>, int*, 

cl::sycl::range<1>, cl::sycl::range<1>, cl::sycl::id<1>)+83328>:               
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send (8|M0)              r8:d     r8:uq   0xC         0x41401FF  //    

wr:2+?, rd:1, A64 Scattered Read msc:1, to 0x0 

88    0x00000000fffdd590 <_ZTSN2cl4sycl6kernelE(int*, 

cl::sycl::range<1>, cl::sycl::range<1>, cl::sycl::id<1>, int*, 

cl::sycl::range<1>, cl::sycl::range<1>, cl::sycl::id<1>)+83344>:               

add (8|M0)               r8.0<1>:d     r8.0<8;8,1>:d     100:w 

89 End of assembler dump. 

6.3 Migrating Code to DPC++ 
Code written in other programming languages, such as C++ or OpenCL™, can be migrated to DPC++ 

code for use on multiple devices. The steps used to complete the migration vary based on the original 

language. 

6.3.1 Migrating from C++ to SYCL/DPC++ 
SYCL is a single-source style programming model based on C++. It builds on features of C++11 and has 

additional support for C++14 and enables C++17 Parallel STL programs to be accelerated on OpenCL™ 

devices. Some of the supported C++ features include templates, classes, operator overloading, lambda, 

and static polymorphism.  

When accelerating an existing C++ application on OpenCL devices, SYCL provides seamless integration 

as most of the C++ code remains intact. Refer to Chapter 2 for SYCL constructs to enable device side 

compilation. 

6.3.2 Migrating from CUDA* to DPC++ 
The Intel DPC++ Compatibility Tool is part of the Intel oneAPI Base Toolkit. The goal of this tool is to 

assist developers employing NVIDIA* CUDA or other languages in the future to migrate their 

applications to benefit from DPC++.  This tool generates DPC++ code as much as possible to compile 

successfully with the Intel oneAPI DPC++ Compiler. However, depending on the complexity of the code, 

it will not migrate all code and manual changes may be required. The tool provides help with IDE plug-

ins and a user guide to complete the transition to DPC++.  

6.3.2.1 Source File Workflow 

The following workflow uses a command line with multiple source files: 
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1. Run the Intel DPC++ Compatibility Tool using the following inputs:  

⎯ Original source code 

⎯ Options, macros, and settings  

⎯ Applicable source language header files, including header files for the libraries used in the 

sources 

Command line example for the Intel DPC++ Compatibility Tool:  

dpct --in-root=./foo --out-root=./result ./foo/main.cu ./foo/bar/util.cu 

--extra-arg="-I./foo/bar/" 

2. After the DPC++ code is output, identify any areas that require additional attention with the help of 

embedded comments and modify the code to create the final DPC++ code.   

6.3.2.2 Makefile Workflow 

The following workflow uses a command line with a makefile project: 

 

Command line example for intercept-build (A):  

intercept-build make  

Command line example for Intel DPC++ Compatibility Tool (B):  

dpct -p compile_commands.json --in-root=../.. --out-root=output program.cu 
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Additional information is available from Get Started with the Intel® DPC++ Compatibility Tool and the 

Intel® DPC++ Compatibility Tool User Guide. 

6.3.3 Migrating from OpenCL Code to DPC++ 
In the current version of DPC++, the runtime employs OpenCL code to enact the parallelism.  DPC++ 

typically requires fewer lines of code to implement kernels and also fewer calls to essential API 

functions and methods. It enables creation of OpenCL programs by embedding the device source code 

in line with the host source code. 

Most of the OpenCL application developers are aware of the somewhat verbose setup code that goes 

with offloading kernels on devices. Using DPC++, it is possible to develop a clean, modern C++ based 

application without most of the setup associated with OpenCL C code. This reduces the learning effort 

and allows for focus on parallelization techniques. 

However, OpenCL application features can continue to be used via the SYCL API. The updated code can 

use as much or as little of the SYCL interface as desired. 

6.3.4 Migrating Between CPU, GPU, and FPGA 
In DPC++, a platform consists of a host device connected to zero or more devices, such as CPU, GPU, 

FPGA, or other kinds of accelerators and processors. 

When a platform has multiple devices, design the application to offload some or most of the work to 

the devices. There are different ways to distribute work across devices in the oneAPI programming 

model: 

1. Initialize device selector – SYCL provides a set of classes called selectors that allow manual 

selection of devices in the platform or let oneAPI runtime heuristics choose a default device based 

on the compute power available on the devices. 

2. Splitting datasets – With a highly parallel application with no data dependency, explicitly divide the 

datasets to employ different devices. The following code sample is an example of dispatching 

workloads across multiple devices. Use dpcpp snippet.cpp to compile the code.  

1  int main() { 

2      int data[1024]; 

3      for (int i = 0; i < 1024; i++) 

4          data[i] = i; 

5          try { 

6              cpu_selector cpuSelector; 

7              queue cpuQueue(cpuSelector); 

8              gpu_selector gpuSelector; 

9              queue gpuQueue(gpuSelector); 

10              buffer<int, 1> buf(data, range<1>(1024)); 

11              cpuQueue.submit([&](handler& cgh) { 

12                  auto ptr =  

13                  buf.get_access<access::mode::read_write>(cgh); 

14                  cgh.parallel_for<class divide>(range<1>(512),  

15                      [=](id<1> index) { 

https://software.intel.com/en-us/get-started-with-intel-dpcpp-compatibility-tool
https://software.intel.com/en-us/intel-dpcpp-compatibility-tool-user-guide
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16                      ptr[index] -= 1; 

17                  }); 

18              }); 

19              gpuQueue.submit([&](handler& cgh1) { 

20                  auto ptr =  

21                  buf.get_access<access::mode::read_write>(cgh1); 

22                  cgh1.parallel_for<class offset1>(range<1>(1024),  

23                      id<1>(512), [=](id<1> index) { 

24                          ptr[index] += 1; 

25                  }); 

26              }); 

27              cpuQueue.wait(); 

28              gpuQueue.wait(); 

29         } 

30         catch (exception const& e) { 

31             std::cout <<  

32             "SYCL exception caught: " << e.what() << '\n'; 

33             return 2; 

34         } 

35         return 0; 

36   } 

3. Target multiple kernels across devices – If the application has scope for parallelization on multiple 

independent kernels, employ different queues to target devices. The list of SYCL supported 

platforms can be obtained with the list of devices for each platform by calling get_platforms() 

and platform.get_devices() respectively. Once all the devices are identified, construct a 

queue per device and dispatch different kernels to different queues. The following code sample 

represents dispatching a kernel on multiple SYCL devices. 

1 #include <stdio.h> 

2 #include <vector> 

3 #include <CL/sycl.hpp> 

4  

5 using namespace cl::sycl; 

6 using namespace std; 

7  

8 int main() 

9 { 

10        size_t N = 1024; 

11        vector<float> a(N, 10.0); 

12        vector<float> b(N, 10.0); 

13        vector<float> c_add(N, 0.0); 

14        vector<float> c_mul(N, 0.0); 

15  

16    { 

17        buffer<float, 1> abuffer(a.data(), range<1>(N),  

18          { property::buffer::use_host_ptr() }); 
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19        buffer<float, 1> bbuffer(b.data(), range<1>(N),  

20          { property::buffer::use_host_ptr() }); 

21        buffer<float, 1> c_addbuffer(c_add.data(), range<1>(N),  

22         { property::buffer::use_host_ptr() }); 

23        buffer<float, 1> c_mulbuffer(c_mul.data(), range<1>(N),  

24          { property::buffer::use_host_ptr() }); 

25  

26  

27     try { 

28  

29              gpu_selector gpuSelector; 

30              auto queue = cl::sycl::queue(gpuSelector); 

31              queue.submit([&](cl::sycl::handler& cgh) { 

32                     auto a_acc = abuffer.template 

33                       get_access<access::mode::read>(cgh); 

34                     auto b_acc = bbuffer.template  

35                       get_access<access::mode::read>(cgh); 

36                     auto c_acc_add = c_addbuffer.template   

37                       get_access<access::mode::write>(cgh); 

38  

39                     cgh.parallel_for<class VectorAdd> 

40                      (range<1>(N), [=](id<1> it) { 

41                          //int i = it.get_global(); 

42                              c_acc_add[it] = a_acc[it] + b_acc[it]; 

43                                   }); 

44  

45                            }); 

46              cpu_selector cpuSelector; 

47              auto queue1 = cl::sycl::queue(cpuSelector); 

48              queue1.submit([&](cl::sycl::handler& cgh) { 

49                     auto a_acc = abuffer.template   

50                         get_access<access::mode::read>(cgh); 

51                     auto b_acc = bbuffer.template   

52                         get_access<access::mode::read>(cgh); 

53                     auto c_acc_mul = c_mulbuffer.template  

54                         get_access<access::mode::write>(cgh); 

55  

56                     cgh.parallel_for<class VectorMul> 

57                      (range<1>(N), [=](id<1> it) { 

58  

59                           c_acc_mul[it] = a_acc[it] * b_acc[it]; 

60                                   }); 

61  

62                            }); 

63  

64               } 
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65  

66               catch (cl::sycl::exception e) { 

67  

68 /* In the case of an exception being throw, print the 

69 error message and 

70                      * return 1. */ 

71                      std::cout << e.what(); 

72                      return 1; 

73               } 

74  

75        } 

76        for (int i = 0; i < 8; i++) { 

77               std::cout << c_add[i] << std::endl; 

78               std::cout << c_mul[i] << std::endl; 

79  

80        } 

81        return 0; 

82 } 

6.4 Composability 
The oneAPI programming model enables an ecosystem with support for the entire development 

toolchain. It includes compilers and libraries, debuggers, and analysis tools to support multiple 

accelerators like CPU, GPUs, FPGA, and more. 

6.4.1 Compatibility with Other Compilers 
The oneAPI programming model provides DPC++ and C++ programming support for single source 

heterogeneous programming. However, the compiler works with a variety of existing and new C++ 

compilers on the host and layers over OpenCL 1.2 code from diverse vendors. 

6.4.2 OpenMP* Offload Interoperability 
The oneAPI programming model provides a unified compiler based on LLVM/Clang with support for 

OpenMP* offload. This allows seamless integration that allows the use of OpenMP constructs to either 

parallelize host side applications or offload to a target device.  

DPC++ is based on TBB runtime when executing device code on the CPU; hence, using both OpenMP 

and DPC++ on a CPU can lead to oversubscribing of threads. Performance analysis of workloads 

executing on the system could help determine if this is occurring.  

6.4.3 OpenCL™ Code Interoperability 
The oneAPI programming model enables developers to continue using all OpenCL code features via 

different parts of the SYCL API. The OpenCL code interoperability mode provided by SYCL helps reuse 
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the existing OpenCL code while keeping the advantages of higher programming model interfaces 

provided by SYCL. There are 2 main parts in the interoperability mode: 

1. To create SYCL objects from OpenCL code objects. For example, a SYCL buffer can be constructed 

from an OpenCL cl_mem or SYCL queue from a cl_command_queue. 

2. To get OpenCL code objects from SYCL objects. For example, launching an OpenCL kernel that uses 

an implicit cl_mem associated to a SYCL accessor. 
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7 Glossary 

Accelerator 

Specialized component containing compute resources that can quickly execute a subset of operations. 

Examples include CPU, FPGA, GPU.  

See also: Device 

Accessor 

Communicates the desired location (host, device) and mode (read, write) of access.  

Application Scope 

Code that executes on the host. 

Buffers 

Memory object that communicates the type and number of items of that type to be communicated to 

the device for computation.  

Command Group Scope 

Code that acts as the interface between the host and device. 

Command Queue 

Issues command groups concurrently.  

Compute Unit 

A grouping of processing elements into a ‘core’ that contains shared elements for use between the 

processing elements and with faster access than memory residing on other compute units on the 

device. 

Device  

An accelerator or specialized component containing compute resources that can quickly execute a 

subset of operations. A CPU can be employed as a device, but when it is, it is being employed as an 

accelerator. Examples include CPU, FPGA, GPU.  

See also: Accelerator  
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Device Code 

Code that executes on the device rather than the host. Device code is specified via lambda expression, 

functor, or kernel class. 

Fat Binary 

Application binary that contains device code for multiple devices. The binary includes both the generic 

code (SPIR-V representation) and target specific executable code. 

Fat Library 

Archive or library of object code that contains object code for multiple devices. The fat library includes 

both the generic object (SPIR-V representation) and target specific object code. 

Fat Object 

File that contains object code for multiple devices. The fat object includes both the generic object 

(SPIR-V representation) and target specific object code. 

Host  

A CPU-based system (computer) that executes the primary portion of a program, specifically the 

application scope and command group scope.  

Host Code 

Code that is compiled by the host compiler and executes on the host rather than the device.  

Images 

Formatted opaque memory object that is accessed via built-in function. Typically pertains to pictures 

comprised of pixels stored in format like RGB.  

Kernel Scope 

Code that executes on the device. 

ND-range 

Short for N-Dimensional Range, a group of kernel instances, or work item, across one, two, or three 

dimensions. 
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Processing Element 

Individual engine for computation that makes up a compute unit.  

Single Source 

Code in the same file that can execute on a host and accelerator(s).  

SPIR-V 

Binary intermediate language for representing graphical-shader stages and compute kernels. 

Sub-groups 

Sub-groups are an Intel extension. 

Work-groups 

Collection of work-items that execute on a compute unit. 

Work-item 

Basic unit of computation in the oneAPI programming model. It is associated with a kernel which 

executes on the processing element. 
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