
Pin CRT User Manual page: 1

Pin CRT User Manual

Table of Contents
PinCRT overview .. 2

Build with PinCRT for Linux ... 4

Building with GCC .. 4

Build with PinCRT for Windows (MSVC Kit) .. 6

Building with Visual Studio .. 6

Build with PinCRT for Windows (Clang-cl kit) .. 10

Building with Visual Studio .. 11

Using clang-cl with Pin - Known issues & BKM.. 13

Migrating from native CRT to PinCRT .. 16

Get rid of OS-specific functions calls .. 16

Make sure you’re using the correct header files ... 16

Make sure you’re linking your Pin tool with PinCRT libraries .. 17

On Linux ... 17

On Windows .. 18

Re-build any third party library with PinCRT .. 18

Common issues that may happen during the migration .. 19

Pin CRT User Manual page: 2

PinCRT overview

PinCRT architecture

PinCRT composed of 3 individual software layers, each of them depends on the previous

layers:

• OS-APIs

o Implements a common set of functions to interact with the operating

systems.

o Every supported operating system has its own OS-APIs implementation.

• C Runtime

o Implements basic C functions like printf(), strcpy(), etc.

o Provides process initialization/termination (e.g. calling C++ constructors).

o Implements “Compiler runtime” – functions that explicitly instrumented
by the compiler (e.g. 64 bit integer support on 32 bit architecture).

o Provides a way to interact with the Pin loader.

o Based on the implementation of libc for Android (bionic).

• C++ libraries

o Implements C++ standard library functionality (e.g. STL).

o Provides limited C++ runtime support:

▪ Doesn't support exception handling.

Pin CRT User Manual page: 3

▪ Doesn't support operations that requires runtime type information

(RTTI) - For example dynamic cast.

o Based on LLVM 12 libc++ (Linux, Windows clang-cl kit) and STLPort

implementation (Windows MSVC kit).

Technically, what is PinCRT?

• A set of headers that replace (mostly) the C runtime headers (e.g. stdio.h).

• A set of libraries (dynamic and/or static) that Pin tool can link with.

So, this means that in order to build a Pin tool with PinCRT we must:

• Compile the tool sources with PinCRT’s headers (by replacing the include path).

• Link the tool object files with PinCRT’s libraries (dynamically or statically).

Important note:

• Pin tool linked against PinCRT cannot be linked against any native system library

(e.g. libc.so, msvcrt*.dll, etc.).

• There are several native system headers that can be included from a PinCRT enabled

source file (see a list of them in “migrating from native CRT to PinCRT” section),

but as a general rule you must not include any native system header when building for

PinCRT (just use the PinCRT’s replacements).

PinCRT features

• OS agnostic:

Provides the same interface (API) and the same behavior for C runtime on all platform.

• Compiler agnostic:

You can build your code with any compiler, then link it to the same binaries of PinCRT.

• Implements its own thread local storage

Doesn't share the thread local storage with glibc, MS-CRT, etc. This is a special

requirement for binary instrumentation environment.

Supported operating systems

Currently PinCRT supports these operating system:

• Linux

• Windows

Pin CRT User Manual page: 4

Build with PinCRT for Linux

Building with GCC

Compiler Parameters :

Macros:

• For all platforms: -D__PIN__=1 -DPIN_CRT=1 -DTARGET_LINUX

• For IA32: -DTARGET_IA32 -DHOST_IA32

• For Intel64: -DTARGET_IA32E -DHOST_IA32E

Flags:
• For all compilers :

 -funwind-tables –fno-stack-protector -fasynchronous-unwind-tables

 -fomit-frame-pointer -fno-strict-aliasing

• Only for g++: -fno-exceptions -fno-rtti -fPic -faligned-new

Include path:

-isystem $(PIN_ROOT)/extras/cxx/include \

 -isystem $(PIN_ROOT)/extras/crt/include \

 -isystem $(PIN_ROOT)/extras/crt/include/arch-$(BIONIC_ARCH) \

-isystem $(PIN_ROOT)/extras/crt/include/kernel/uapi \

-isystem $(PIN_ROOT)/extras/crt/include/kernel/uapi/asm-x86 \

-I$(PIN_ROOT)/source/include/pin \

-I$(PIN_ROOT)/source/include/pin/gen \

-I$(PIN_ROOT)/extras/components/include \

-I$(PIN_ROOT)/extras/xed-(XED_ARCH)/include/xed

Whereas:
BIONIC_ARCH is 'x86' for IA32, and 'x86_64' for Intel64

XED_ARCH is 'ia32' for IA32, and 'intel64' for Intel64

 PIN_ROOT is the root directory of the Pin kit

Linker flags:

First of all, all dependent libraries from the linker command line, denoted by –l (small l)

should be removed. These need to be replaced with their PinCRT counterparts.

Add these libraries to the linkage command line:

-nostdlib -lc-dynamic -lm-dynamic -lc++ -lc++abi -

L$(PIN_ROOT)/$(TARGET)/runtime/pincrt

Whereas:

TARGET is 'ia32' for IA32, and 'intel64' for Intel64

PIN_ROOT is the root directory of the Pin kit

Pin CRT User Manual page: 5

If you're building a PinTool that was used to link with pindwarf, you should link with

pin3dwarf instead. I.e. replace -lpindwarf to -lpin3dwarf.

Pin CRT User Manual page: 6

Build with PinCRT for Windows (MSVC

Kit)

Instructions in this section are applicable for using the Pin Windows MSVC kit (pin-

X.XX-buildnum-hash-msvc-windows.zip). Note this kit offers STLPort C++ runtime

which supports C++03 standard only.

For Pin Windows LLVM-based kit (pin-X.XX-buildnum-hash-clang-windows.zip), which

offers a modern C++11 compatible runtime library, kindly read Build with PinCRT for

Windows (Clang-cl kit)

Building with Visual Studio

Compiler Parameters:

Macros:

• For all platforms: /DPIN_CRT=1 /DTARGET_WINDOWS

• For IA32: /DTARGET_IA32 /D__i386__ /DHOST_IA32

• For Intel64: /DTARGET_IA32E /D__LP64__ /DHOST_IA32E

• For building a PinTool or shared library: /MD

• For building an executable or stand-alone tool: /MD

Flags:

/GR- /GS- /EHs- /EHa- /FP:strict /Oi-

Include Path:

/I$(PIN_ROOT)/extras/stlport/include

/I$(PIN_ROOT)/extras

/I$(PIN_ROOT)/extras/libstdc++/include

/I$(PIN_ROOT)/extras/crt/include

/I$(PIN_ROOT)/extras/crt

/I$(PIN_ROOT)/extras/crt/include/arch-$(BIONIC_ARCH)

/I$(PIN_ROOT)/extras/crt/include/kernel/uapi

/I$(PIN_ROOT)/extras/crt/include/kernel/uapi/asm-x86

/I$(PIN_ROOT)/source/include/pin

/I$(PIN_ROOT)/source/include/pin/gen

/I$(PIN_ROOT)/extras/components/include

/I$(PIN_ROOT)/extras/xed-$(XED_ARCH)/include/xed

Whereas:

BIONIC_ARCH is 'x86' for IA32, and 'x86_64' for Intel64

XED_ARCH is 'ia32' for IA32, and 'intel64' for Intel64

PIN_ROOT is the root directory of the Pin kit

Additional include file:

Pin CRT User Manual page: 7

You should add this switch to the compilation command line to include this file in every

compilation:

/FIinclude/msvc_compat.h

Pin CRT User Manual page: 8

Important:

If you’re including Windows.h from one of you source files:

We provide our own replacement for this header file (since including Windows.h usually

includes all MS-CRT stuff that we don’t want to get). Our Windows.h replacement is

actually a “wrapper” header for the original Windows.h that forces it to declare only the

thing we wanted. In order to do so we must know where to find the original Windows.h

file (located in Windows SDK). In that case, you’ll need to add this to the compilation

flags:

/D_WINDOWS_H_PATH_="$(ORIGINAL_WINDOWS_H_PATH)"

Linker flags:

First of all, Microsoft's libc libraries (e.g.: libcpmt.lib or libcmt.lib) should be removed

from the linker command line. These need to be replaced with their PinCRT

counterparts.

Add these import libraries to the linkage command line:

• For building a PinTool or shared library:

/NODEFAULTLIB pincrt.lib pinipc.lib kernel32.lib

• For building an executable or stand-alone tool:
/NODEFAULTLIB pincrt.lib kernel32.lib

Only dynamic PinCRT libraries are supported.

Libraries search path:

/LIBPATH:$(PIN_ROOT)/$(TARGET)/runtime/pincrt

/LIBPATH:$(PIN_ROOT)/$(TARGET)/lib-ext

Whereas:

TARGET is 'ia32' for IA32, and 'intel64' for Intel64

PIN_ROOT is the root directory of the Pin kit

Ignore linker warnings:

It is safe to ignore linker warnings #4210, and #4049.

Add these switches to the linker command line to suppress these

warnings:

/IGNORE:4210 /IGNORE:4049

Pin CRT User Manual page: 9

Additional objects to link

For every libc, there is a static part that must be statically linked with all

executables/shared objects. The exact object files to link depends on whether you build

an executable or shared object.

For building a shared library or PinTool:

● This object file must be first in the linkage command:

crtbeginS.o

For building an executable or stand-alone tool:

● This object file must be first in the linkage command:

crtbegin.o

The above object files are located at

$(PIN_ROOT)/$(TARGET)/runtime/pincrt

Whereas:

TARGET is 'ia32' for IA32, and 'intel64' for Intel64

PIN_ROOT is the root directory of the Pin kit

Build with PinCRT for Windows (Clang-cl

kit)

Introduction:

Pin provides a new modern LLVM-based C++ library that supports C++11 and replaces

the old stlport-based C++ library which supports C++03 only.

This library is now available on Windows OS as a separate PIN kit (

pin-X.XX-buildnum-hash-clang-windows.zip) side by side with the legacy stlport-based

kit (pin-X.XX-buildnum-hash-msvc-windows.zip)

Due to LLVM limitations, using/compiling the new C++ library requires Pin Tools to be

built with the LLVM clang-cl toolset rather than Microsoft toolset. As Microsoft Visual

Studio supports switching between the mentioned toolsets, adoption is mostly straight-
forward. The below sections provide detailed instructions and steps to adopt and work

with Pin Windows clang-cl kit.

Prerequisites:

Building Pin Tools with the LLVM C++ library requires Clang-cl version 14.0.5 as

minimum (15.0.X or higher recommended)

If you have Visual 2022 installed, you can easily install clang-cl toolset by running the

Visual Studio Installer and selecting the to install the following individual components:

See Microsoft documentation for full details.

After installation complete, verify clang-cl version by the following:

> "C:\Program Files\Microsoft Visual

Studio\2022\Professional\VC\Tools\Llvm\bin\clang-cl.exe" –version

Alternatively, clang-cl for Windows can be downloaded directly from LLVM site

https://learn.microsoft.com/en-us/cpp/build/clang-support-msbuild?view=msvc-170
https://releases.llvm.org/download.html

Building with Visual Studio

Important Note: Items marked in bold are unique to clang-cl. If you are migrating your
code from MSVC to clang-cl, make sure these items are added to your compilation
command line.

Compiler:

 Make sure your build scripts/make files use LLVM clang-cl.exe and not Microsoft cl.exe

Compiler Parameters:

Macros:

• For all platforms:

/DPIN_CRT=1 /DTARGET_WINDOWS /D_LIBCPP_DISABLE_AVAILABILITY

/D_LIBCPP_NO_VCRUNTIME /D__BIONIC__

• For IA32: /DTARGET_IA32 -m32 /D__i386__ /DHOST_IA32

• For Intel64: /DTARGET_IA32E -m64 /D__LP64__ /DHOST_IA32E

• For building a PinTool or shared library: /MD

• For building an executable or stand-alone tool: /MD

Flags:

/GR- /GS- /EHs- /EHa- /FP:strict /Oi- -Wno-non-c-typedef-for-linkage -

Wno-microsoft-include -Wno-unicode

Include Path:

Include path should look like the following:

/I$(PIN_ROOT)/source/include/pin

/I$(PIN_ROOT)/source/include/pin/gen

/I$(PIN_ROOT)/extras/cxx/include

/I$(PIN_ROOT)/extras

/I$(PIN_ROOT)/extras/crt/include

/I$(PIN_ROOT)/extras/crt

/I$(PIN_ROOT)/extras/crt/include/arch-$(BIONIC_ARCH)

/I$(PIN_ROOT)/extras/crt/include/kernel/uapi

/I$(PIN_ROOT)/extras/crt/include/kernel/uapi/asm-x86

/I$(PIN_ROOT)/extras/components/include

/I$(PIN_ROOT)/extras/xed-$(XED_ARCH)/include/xed

Whereas:

BIONIC_ARCH is 'x86' for IA32, and 'x86_64' for Intel64

XED_ARCH is 'ia32' for IA32, and 'intel64' for Intel64

PIN_ROOT is the root directory of the Pin kit

Note: If you are migrating your code from MSVC to clang-cl, make sure to remove the following

from include path:

/I$(PIN_ROOT)/extras/stlport/include

/I$(PIN_ROOT)/extras/libstdc++/include

And replace with:
/I$(PIN_ROOT)/extras/cxx/include

Additional include file:

You should add this switch to the compilation command line to include this file in every

compilation:

/FIinclude/msvc_compat.h

Important:

If you’re including Windows.h from one of you source files:

We provide our own replacement for this header file (since including Windows.h usually

includes all MS-CRT stuff that we don’t want to get). Our Windows.h replacement is

actually a “wrapper” header for the original Windows.h that forces it to declare only the

thing we wanted. In order to do so we must know where to find the original Windows.h

file (located in Windows SDK). In that case, you’ll need to add this to the compilation

flags:

/D_WINDOWS_H_PATH_="$(ORIGINAL_WINDOWS_H_PATH)"

Linker Parameters:

Linker flags:

First of all, Microsoft's libc libraries (e.g.: libcpmt.lib or libcmt.lib) should be removed

from the linker command line. These need to be replaced with their PinCRT

counterparts.

Add these import libraries to the linkage command line:

• For building a PinTool or shared library:

/safeseh:no /NODEFAULTLIB pincrt.lib pinipc.lib c++.lib kernel32.lib

• For building an executable or stand-alone tool:
/safeseh:no /NODEFAULTLIB pincrt.lib c++.lib kernel32.lib

Only dynamic PinCRT libraries are supported.

If you are migrating your code from MSVC to clang-cl:

1. Make sure the items in bold above are added to your linker command line.

2. Replace calls to Microsoft Linker (link.exe) with LLVM linker (lld-link.exe)

Libraries search path:

/LIBPATH:$(PIN_ROOT)/$(TARGET)/runtime/pincrt

/LIBPATH:$(PIN_ROOT)/$(TARGET)/lib

Whereas:

TARGET is 'ia32' for IA32, and 'intel64' for Intel64

PIN_ROOT is the root directory of the Pin kit

Ignore linker warnings:

It is safe to ignore linker warnings #4210, and #4049.

Add these switches to the linker command line to suppress these

warnings:

/IGNORE:4210 /IGNORE:4049

Additional objects to link

For every libc, there is a static part that must be statically linked with all

executables/shared objects. The exact object files to link depends on whether you build

an executable or shared object.

For building a shared library or PinTool:

● This object file must be first in the linkage command:

crtbeginS.o

For building an executable or stand-alone tool:

● This object file must be first in the linkage command:

crtbegin.o

The above object files are located at

$(PIN_ROOT)/$(TARGET)/runtime/pincrt

Whereas:

TARGET is 'ia32' for IA32, and 'intel64' for Intel64

PIN_ROOT is the root directory of the Pin kit

Using clang-cl with Pin - Known issues & BKM

Do not use fastcall convention with Analysis calls in 32-bit tools

There is an outstanding clang issue with fastcall calling convention and the use of large

integers as function parameters in 32 bit tools. Do not use fastcall with analysis routines

until this issue is resolved. The fix is planned for version 16 of clang.

clang casting issues

Casting with clang is not implicit, and it requires to explicitly declare it in your code.

Specifically, clang does not cast automatically from (char *) to (void *) during function

call. It issues a compilation error. To go around it, explicitly cast to (void *). This should

happen with other pointer type castings as well.

clang Optimizations

Clang compiler has a more sophisticated optimization. so always disable it (/Od) to

develop your code before and when you are done switch to /O3. If it fails, a good chance

that it has to do with clang optimization going around.

Std::tr1 replaced by ::std

Some C++ classes (e.g. unordered_map, unordered_set, etc.) were under std::tr1

namespace in Stlport. Now they are under ::std itself. Fix your code accordingly.

Avoid warnings as errors

Clang by default is much stricter than Microsoft CL to warning, and by default treats

them as errors. If your code is sensitive to that, disable these errors in advance by using a

-Wno-<> corresponding directive.

Example:

-Wno-unknown-pragmas -Wno-pointer-sign -Wno-incompatible-pointer-types …

MMX and AVX Instrinsics handling (and intrinsic in general)

Clang-cl favors gcc flags conventions over Microsoft compiler ones.

Specifically when using MMX/AVX, this can result in cases where capabilities bundled

with a single flag in Microsoft compiler need to be split to multiple gcc-style flags. Here

are some examples:

/arch:AVX → -march=skylake-avx512

/arch:AVX → -mfma

/arch:AVX → -mxsavec -mavx

/arch:AVX → -maes -mpclmul -mssse3

clang-cl optimization impact on mxcsr register

clang-cl optimization might impact mxcsr and as a result cause inconsistent instruction

ordering when using intrinsic.

For example, performing rounding routine after the following code might end with

incorrect calculations:

 __m128 ma = _mm_load_ss(&af);

 __m128 mb = _mm_load_ss(&bf);

 __m128 mres = _mm_mul_ss(ma, mb);

 _mm_store_ss(&rf, mres);

To overcome this issue, declare the registers as volatile as shown in the following

example:

 volatile __m128 ma = _mm_load_ss(&af);

 volatile __m128 mb = _mm_load_ss(&bf);

 volatile __m128 mres = _mm_mul_ss(ma, mb);

 _mm_store_ss(&rf, mres);

Clang-cl supports GCC's asm volatile convention, therefore another alternative is to

provide your own linux-style assembly definition of this intrinsic:

 __asm__ __volatile__("movss %1, %%xmm1 \n\t" // xmm1 = af

 "movss %2, %%xmm2 \n\t" // xmm2 = bf

 "mulss %%xmm2, %%xmm1 \n\t" // xmm1(af) *= xmm2(bf)

 "movss %%xmm1, %0 \n\t" // store result in rf

 : "=m"(rf) // Outputs

 : "m"(af), "m"(bf) // Inputs

 : "%xmm1", "%xmm2" // Modifies

Note the above enables you to write better cross-compiler code

Migrating from native CRT to PinCRT

Get rid of OS-specific functions calls

As a general rule, PinCRT supports only ISO C functions.

So, in general, no OS-specific functions are implemented in PinCRT (although there are

some implementation of OS-specific function for some functions we chose).

Make sure you’re using the correct header files

When building a Pin tool with PinCRT, all compilation units (I.e. source files that

compiled to object files) must include only the two categories of header files list below.

If one of the header files that was being include does not fall into one of those two

categories than there is a good chance that that your Pin tool won’t be able to compile,

link, or run.
The two categories of header files supported by PinCRT:

1. PinCRT and Pin header files (that reside on one of the Pin kit subdirectories).

2. System headers which are PinCRT-enabled – see the list of PinCRT enabled

system headers.

How to make sure my source includes only PinCRT compatible headers:

We recommend using the GCC/Clang “-E” flag,or Visual Studio’s “/E” flag to dump the

raw output of the C/C++ preprocessor output.

From this output you can see all the files that are being included in the compilation of the

source file.

Make sure each of the files included (either directly or indirectly by you source file) falls

into one of the two categories above.

PinCRT-enabled system headers
The header files below belongs to native CRTs, but may be included from PinCRT

enabled Pin tool:
Linux (headers from glibc)

● stddef.h

● stdarg.h

● float.h
Windows (Visual Studio’s libc)

● intrin.h

● xmmintrin.h

● windows.h (with some restrictions).

Make sure you’re linking your Pin tool with PinCRT libraries

When linking a Pin tool with PinCRT, all the libraries which you tool depends on must

be linked with PinCRT as well.

Also, linking with a native CRT (e.g. glibc, or Visual Studio CRT) is not possible.

This means that you might need to rebuild some libraries that your tool is using so they’ll

be linked with PinCRT.

If one of the libraries your tool is linked against (either directly, or indirectly) is linked

with other C-Runtime than PinCRT this would lead to crashes when running it with Pin.

How to check the libraries your tool depends on

On Linux
From a Linux terminal, run:

ldd <your tool shared object file>
These are the valid PinCRT libraries that you should see:

● libc-dynamic.so

● libdl-dynamic.so

● libm-dynamic.so

● libc++.so

● libc++abi.so

● libpin3dwarf.so

● libxed.so

● linux-vdso.so.1 (Not part of PinCRT but valid as well).

Below are the libraries that should *not* be seen in the output.

Note that if you spot a shared object that depends on one of the libraries listed below,

then this shared object must be rebuilt with PinCRT so it won’t depend on any of them

libraries:

● libc.so.6

● libm.so.6

● libgcc_s.so.1

● libstdc++.so.6

● Any library under the directories: /lib, /lib32, and /lib64

Any other library in the output of “ldd” must be inspected again for dependent libraries

using “ldd”.

On Windows
From Visual Studio command line prompt, run:

dumpbin /DEPENDENTS <your tool DLL file>

And look at all of the dependencies of your DLL.
These are the valid PinCRT libraries that you should see:

● pincrt.dll

● kernel32.dll – works for now but might not be working in future version of Pin.

The reason is that when using it Pin tool might undesirably interfere with the

application.

● Non-system DLLs that you explicitly specified in link time, and you already

checked it with using this procedure with “dumpbin”.

If you spot any other library in the dependents list then the library we investigated must

be rebuilt with PinCRT so it won’t depend on any of the libraries.

Re-build any third party library with PinCRT
If your Pin tool is using a third party library then this library most probably needs to be

re-built again from source with PinCRT.

Actually, the only case when a third party library may not be rebuilt is when dealing with

a library which doesn’t require any libc services – which is quite rare.

Common issues that may happen during

the migration

Problem:

You encounter one of the error messages below when trying to run Pin:

E: Unable to load XXX: dlopen failed: cannot locate symbol "stdout" referenced by

"XXX"...

E: Unable to load XXX: dlopen failed: cannot locate symbol "stderr" referenced by

"XXX"...

Solution:

You most probably built your tool (or at least one of the object files that were linked to

your tool) with the native CRT headers instead of PinCRT headers.

1. Locate the object(s) file that was/were built with the wrong header files.

2. Make sure you added the required compilation flags to the compilation

command line of the object files you found.

3. If you sure you used the right compilation command line then see the

section: “How to make sure my source includes only PinCRT compatible

headers”.

Problem:

You encounter one of the error messages below when trying to build your Pin tool:

Compiler error:

error: exception handling disabled, use -fexceptions to enable

Linker error:

undefined reference to ` cxa_allocate_exception'...

undefined reference to ` cxa_throw'

unresolved external symbol CxxThrowException@8 referenced in function …

Solution:

C++ exceptions is currently not supported in PinCRT. In the meantime, you’ll have to

rewrite your program not to use exceptions.

If you’re getting one of the linker errors, make sure you added all of the PinCRT

compilation flags specified in this document – in particular –fno-exceptions on clang and

gcc, and /EHs- /EHa- in Visual Studio.

This will make the compiler notify you about the exact locations in your source where

you used C++ exceptions.

You encounter one of the error messages below when trying to build your Pin tool:

Compiler warning:

warning C4541: 'dynamic_cast' used on polymorphic type 'XXX' with /GR-;

unpredictable behavior may result

Linker error:

error LNK2019: unresolved external symbol RTDynamicCast referenced in function

…

error LNK2001: unresolved external symbol "const type_info::`vftable'"

undefined reference to ` dynamic_cast'

undefined reference to ` cxa_bad_cast'

undefined reference to `vtable for cxxabiv1:: vmi_class_type_info'

undefined reference to `vtable for cxxabiv1:: class_type_info'

undefined reference to ` gxx_personality_v0'

Solution:

C++ Runtime type information (RTTI) and dynamic cast are currently not supported in

PinCRT. In the meantime, you’ll have to rewrite your program not to use RTTI or

dynamic casts.

If you’re getting one of the linker errors, make sure you added all of the PinCRT

compilation flags specified in this document – in particular –fno-rtti on clang and gcc, and

/GR- in Visual Studio.

This will make the compiler notify you about the exact locations in your source where

you used C++ RTTI or dynamic cast.

Problem:

You encounter one of the error messages below when trying to build your Pin tool:

Linker error:

error LNK2019: unresolved external symbol @ security_check_cookie@4 referenced

in function …

error LNK2019: unresolved external symbol security_cookie referenced in function

…

undefined reference to ` stack_chk_fail'

Solution:

One or more of the object files you’re trying to link was compiled with the stack

protector feature (or security check in Visual Studio).

Locate the faulty object files (by locating object files with undefined reference to the

symbols that the linker complains about), and, make sure you added all of the required

compilation flags specified in this document – in particular –fno-stack-protector on clang

and gcc, and /GS- in Visual Studio.

You encounter one of the error messages below when trying to build your Pin tool:

Linker error:

undefined reference to ` dso_handle'

error LNK2001: unresolved external symbol _fltused

error LNK2001: unresolved external symbol atexit

error LNK2019: unresolved external symbol _CRT_INIT referenced in function

Ptrace_DllMainCRTStartup

Solution:

You probably didn’t link your Pin tool with one (or two) of the object files crtbeginS.o,

crtbegin.o, crtendS.o, crtend.o, crtbeginS.obj, crtbegin.obj.

The exact files set that you need depends on the target OS of your Pin tool and whether

you’re trying to build shared library (Pin tool) or executable (stand alone tool).

Please refer to the specific linkage instructions for more details.

Problem:

After migrating a Pin tool from using MS-CRT to PinCRT all *wprintf() function started

to act weird.

In particular, the “%s” format doesn’t format a string correctly.

Solution:

There is a difference between MS-CRT’s *wprintf() functions and almost every other

CRT’s (including PinCRT’s) *wprintf():

● In MS-CRT: the default strings in *wprintf() are wide characters (UTF16) so

specifying “%s” in *wprintf() function actually means “%ls”.

● In PinCRT (and glibc): the default strings in *wprintf() are multi-bytes characters

(UTF8).

The code you ported from MS-CRT that calls *wprintf() probably expects a wide

characters argument wherever a “%s” was specified in the format string.

So the best solution would be to replace all the “%s” in the format string to *wprintf() to

“%ls”.

Problem:

On Visual Studio, you encounter one of the error messages below when trying to build

your Pin tool:

Linker error:

error LNK2019: unresolved external symbol Cilog

error LNK2019: unresolved external symbol libm_sse2_log_precise

or any error in this form:

error LNK2019: unresolved external symbol Ci*

error LNK2019: unresolved external symbol libm_*

Solution:

You forgot to add the /Oi- compiler flag when you compiled the object file with the

missing reference.

