VS provides pseudorandom, quasirandom, and nondeterministic random number generators. This includes the following BRNGs, which differ in speed and other properties:

the 31bit multiplicative congruential pseudorandom number generator MCG(1132489760, 2^{31} 1) [L'Ecuyer99]

the 32bit generalized feedback shift register pseudorandom number generator GFSR(250,103) [Kirkpatrick81]

the combined multiple recursive pseudorandom number generator MRG32k3a [L'Ecuyer99a]

the 59bit multiplicative congruential pseudorandom number generator MCG(13^{13}, 2^{59}) from NAG Numerical Libraries [NAG]

WichmannHill pseudorandom number generator (a set of 273 basic generators) from NAG Numerical Libraries [NAG]

Mersenne Twister pseudorandom number generator MT19937 [Matsumoto98] with period length 2^{19937}1 of the produced sequence

Set of 6024 Mersenne Twister pseudorandom number generators MT2203 [Matsumoto98], [Matsumoto00]. Each of them generates a sequence of period length equal to 2^{2203}1. Parameters of the generators provide mutual independence of the corresponding sequences.

SIMDoriented Fast Mersenne Twister pseudorandom number generator SFMT19937 [Saito08] with a period length equal to 2^{19937}1 of the produced sequence.

Sobol quasirandom number generator [Sobol76], [Bratley88], which works in arbitrary dimension. For dimensions greater than 40 the user should supply initialization parameters (initial direction numbers and primitive polynomials or direction numbers) by using vslNewStreamEx function. See additional details on interface for registration of the parameters in the library in VS Notes.

Niederreiter quasirandom number generator [Bratley92], which works in arbitrary dimension. For dimensions greater than 318 the user should supply initialization parameters (irreducible polynomials or direction numbers) by using vslNewStreamEx function. See additional details on interface for registration of the parameters in the library in VS Notes.

Nondeterministic random number generator (RDRANDbased generators only) [AVX], [IntelSWMan].
Note
You can use a nondeterministic random number generator only if the underlying hardware supports it. For instructions on how to detect if an Intel CPU supports a nondeterministic random number generator see, for example, Chapter 8: Post32nm Processor Instructions in [AVX] or Chapter 4: RdRand Instruction Usage in [BMT].
Note
The time required by some nondeterministic sources to generate a random number is not constant, so you might have to make multiple requests before the next random number is available. VS limits the number of retries for requests to the nondeterministic source to 10. You can redefine the maximum number of retries during the initialization of the nondeterministic random number generator with the vslNewStreamEx function.
For more details on the nondeterministic source implementation for Intel CPUs please refer to Section 7.3.17, Volume 1, Random Number Generator Instruction in [IntelSWMan] and Section 4.2.2, RdRand Retry Loop in [BMT].

Philox4x3210 counterbased pseudorandom number generator with a period of 2^{128}PHILOX4X32X10[Salmon11].

ARS5 counterbased pseudorandom number generator with a period of 2^{128}, which uses instructions from the AESNI set ARS5[Salmon11].
See some testing results for the generators in VS Notes and comparative performance data at https://software.intel.com/enus/articles/intelmathkernellibrarydocumentation.
VS provides means of registration of such userdesigned generators through the steps described in Advanced Service Routines.
For some basic generators, VS provides two methods of creating independent random streams in multiprocessor computations, which are the leapfrog method and the blocksplitting method. These sequence splitting methods are also useful in sequential Monte Carlo.
In addition, MT2203 pseudorandom number generator is a set of 6024 generators designed to create up to 6024 independent random sequences, which might be used in parallel Monte Carlo simulations. Another generator that has the same feature is WichmannHill. It allows creating up to 273 independent random streams. The properties of the generators designed for parallel computations are discussed in detail in [Coddington94].
You may want to design and use your own basic generators. VS provides means of registration of such userdesigned generators through the steps described in Advanced Service Routines.
There is also an option to utilize externally generated random numbers in VS distribution generator routines. For this purpose VS provides three additional basic random number generators:

for external random data packed in 32bit integer array

for external random data stored in double precision floatingpoint array; data is supposed to be uniformly distributed over (a,b) interval

for external random data stored in single precision floatingpoint array; data is supposed to be uniformly distributed over (a,b) interval.
Such basic generators are called the abstract basic random number generators.
See VS Notes for a more detailed description of the generator properties.
Optimization Notice 

Intel's compilers may or may not optimize to the same degree for nonIntel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessordependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804 