Article

Intel® Math Kernel Library Improved Small Matrix Performance Using Just-in-Time (JIT) Code Generation for Matrix Multiplication (GEMM)

    The most commonly used and performance-critical Intel® Math Kernel Library (Intel® MKL) functions are the general matrix multiply (GEMM) functions.

作者: Gennady F. (Blackbelt) 最后更新时间: 2019/03/21 - 03:01
Article

Maximize TensorFlow* Performance on CPU: Considerations and Recommendations for Inference Workloads

This article will describe performance considerations for CPU inference using Intel® Optimization for TensorFlow*
作者: Nathan Greeneltch (Intel) 最后更新时间: 2019/07/31 - 12:11
Article

最大限度提升 CPU 上的 TensorFlow* 性能:推理工作负载的注意事项和建议

本文将介绍使用面向 TensorFlow 的英特尔® 优化* 进行 CPU 推理的性能注意事项
作者: Nathan Greeneltch (Intel) 最后更新时间: 2019/08/09 - 02:02
Article

Vector API Developer Program for Java* Software

This article introduces Vector API to Java* developers. It shows how to start using the API in Java programs, and provides examples of vector algorithms. It provides step-by-step details on how to build the Vector API and build Java applications using it. It provides the location for downloadable binaries for Project Panama binaries.
作者: Neil V. (Intel) 最后更新时间: 2019/12/09 - 12:10
Article

How to Install the Python* Version of Intel® Data Analytics Acceleration Library (Intel® DAAL)

Intel® Data Analytics Acceleration Library (Intel® DAAL) is a software solution that offers building blocks covering all the stages of data analytics, from preprocessing to decision making. The beta version of Intel DAAL 2017 provides support for the Python* language.
作者: Gennady F. (Blackbelt) 最后更新时间: 2019/12/09 - 12:20
Article

如何安装 Python* 版英特尔® 数据分析加速库(英特尔® DAAL)

Intel® Data Analytics Acceleration Library (Intel® DAAL) is a software solution that offers building blocks covering all the stages of data analytics, from preprocessing to decision making. The beta version of Intel DAAL 2017 provides support for the Python* language.
作者: Gennady F. (Blackbelt) 最后更新时间: 2019/12/09 - 12:20