Article

教程:基于 Android* 操作系统的 OpenCL™ 入门

下载代码样本

作者: 管理 最后更新时间: 2019/05/17 - 12:00
Article

OpenCL™ Device Fission 助力 CPU 性能

下载 PDF

作者: 最后更新时间: 2019/05/31 - 14:20
Article

GPU-Quicksort в OpenCL 2.0: вложенные параллельные вычисления и сканирование групп обработки

Введение Краткий курс истории алгоритма быстрой сортировки
作者: 最后更新时间: 2019/05/31 - 14:20
Article

OpenCL 2.0 中的 GPU-Quicksort: 嵌套并行性和工作组扫描函数

简介
作者: Robert I. (Intel) 最后更新时间: 2019/05/31 - 14:20
Article

Использование изображений, доступных для чтения и записи, в OpenCL™ 2.0

While Image convolution is not as effective with the new Read-Write images functionality, any image processing technique that needs be done in place may benefit from the Read-Write images. One example of a process that could be used effectively is image composition. In OpenCL 1.2 and earlier, images were qualified with the “__read_only” and __write_only” qualifiers. In the OpenCL 2.0, images can...
作者: 最后更新时间: 2019/07/05 - 11:22
Article

使用 OpenCL™ 2.0 读写图片

While Image convolution is not as effective with the new Read-Write images functionality, any image processing technique that needs be done in place may benefit from the Read-Write images. One example of a process that could be used effectively is image composition. In OpenCL 1.2 and earlier, images were qualified with the “__read_only” and __write_only” qualifiers. In the OpenCL 2.0, images can...
作者: 最后更新时间: 2019/05/31 - 14:20
博客

视频流处理 - 趋向绿色环保化

了解创新的方法来解决IP视频的快速增长,同时减少您的数据中心占地面积和成本。
作者: Gael H. (Blackbelt) 最后更新时间: 2019/07/04 - 11:05
Article

使用 LibRealSense 和 OpenCV 流传输 RGB 和深度数据

This article shows you how you can use LibRealSense and OpenCV to stream RGB and depth data. In the end you will have a nice starting point where you use this code base to build upon to create your own LibRealSense / OpenCV applications.
作者: Rick Blacker (Intel) 最后更新时间: 2018/01/18 - 16:13
Article

设备端 AVC 运动评估简介

下载示例

下载设备端 VME 示例代码 和高级示例。

作者: Jeffrey M. (Intel) 最后更新时间: 2019/01/24 - 16:28
Article

OpenVINO™ 工具套件版本说明

OpenVINO™ 2018 R3 Release - Gold release of the Intel® FPGA Deep Learning Acceleration Suite accelerates AI inferencing workloads using Intel® FPGAs that are optimized for performance, power, and cost, Windows* support for the Intel® Movidius™ Neural Compute Stick, Python* API preview that supports the inference engine, Open Neural Network Exchange (ONNX) Model Zoo provides initial support for...
作者: Deanne Deuermeyer (Intel) 最后更新时间: 2018/10/22 - 23:52