博客

Optimizing Big Data processing with Haswell 256-bit Integer SIMD instructions

Big Data requires processing huge amounts of data. Intel Advanced Vector Extensions 2 (aka AVX2) promoted most Intel AVX 128-bits integer SIMD instruction sets to 256-bits.

作者: gaston-hillar (Blackbelt) 最后更新时间: 2019/07/06 - 17:00
Article

Caffe* Training on Multi-node Distributed-memory Systems Based on Intel® Xeon® Processor E5 Family

Caffe is a deep learning framework developed by the Berkeley Vision and Learning Center (BVLC) and one of the most popular community frameworks for image recognition. Caffe is often used as a benchmark together with AlexNet*, a neural network topology for image recognition, and ImageNet*, a database of labeled images.
作者: Gennady F. (Blackbelt) 最后更新时间: 2019/07/05 - 14:54
Article

基于英特尔® 至强™ 处理器 E5 产品家族的多节点分布式内存系统上的 Caffe* 培训

Caffe is a deep learning framework developed by the Berkeley Vision and Learning Center (BVLC) and one of the most popular community frameworks for image recognition. Caffe is often used as a benchmark together with AlexNet*, a neural network topology for image recognition, and ImageNet*, a database of labeled images.
作者: Gennady F. (Blackbelt) 最后更新时间: 2019/07/05 - 14:55
Article

Free access to Intel® Compilers, Performance libraries, Analysis tools and more...

Intel® Parallel Studio XE is a very popular product from Intel that includes the Intel® Compilers, Intel® Performance Libraries, tools for analysis, debugging and tuning, tools for MPI and the Intel® MPI Library. Did you know that some of these are available for free? Here is a guide to “what is available free” from the Intel Parallel Studio XE suites.
作者: 管理 最后更新时间: 2019/03/21 - 12:00
Article

Manage Deep Learning Networks with Caffe* Optimized for Intel® Architecture

How to optimize Caffe* for Intel® Architecture, train deep network models, and deploy networks.
作者: Andres Rodriguez (Intel) 最后更新时间: 2019/03/11 - 13:17
Article

Caffe* Optimized for Intel® Architecture: Applying Modern Code Techniques

This paper demonstrates a special version of Caffe* — a deep learning framework originally developed by the Berkeley Vision and Learning Center (BVLC) — that is optimized for Intel® architecture.
作者: 最后更新时间: 2019/07/06 - 16:40
Article

Introducing DNN primitives in Intel® Math Kernel Library

Please notes: Deep Neural Network(DNN) component in MKL is deprecated since intel® MKL ​2019 and will be removed in the next intel® MKL Release.

作者: Vadim Pirogov (Intel) 最后更新时间: 2019/03/21 - 12:00
Article

Running Intel® Parallel Studio XE Analysis Tools on Clusters with Slurm* / srun

Since HPC applications target high performance, users are interested in analyzing the runtime performance of such applications.

作者: Michael Steyer (Intel) 最后更新时间: 2019/07/06 - 11:23
Article

面向英特尔® 架构优化的 Caffe*:使用现代代码技巧

This paper demonstrates a special version of Caffe* — a deep learning framework originally developed by the Berkeley Vision and Learning Center (BVLC) — that is optimized for Intel® architecture.
作者: 最后更新时间: 2019/07/06 - 16:40
Article

Thread Parallelism in Cython*

Cython* is a superset of Python* that additionally supports C functions and C types on variable and class attributes. Cython generates C extension modules, which can be used by the main Python program using the import statement.
作者: Nguyen, Loc Q (Intel) 最后更新时间: 2019/07/06 - 16:30