OpenMP*

Intel OpenMP Runtime: TASK_ID in __kmp_task_alloc(...) routine call

Hi ..

I am trying to retrieve task (explicit) identity in runtime. I find the routine call __kmp_task_alloc: Allocate the taskdata and task data structures for a task, Here 

  taskdata->td_task_id      = KMP_GEN_TASK_ID(); and it the struct element definition says td_task_id, is assigned by debugger.

My Questions:

1). there any task_id which is been assigned while a task is formed..? If so, how can I get that ..? My goal is to identify each task and its data environment.      

Is there actually a difference between two tight loop parallelization OpenMP pragmas ?

Dear collegues,

Is there actually a difference between :

#pragma omp parallel for
for (int i = 0; i < 10; i++)
{
      /* **** */
}

AND

#pragma omp parallel
{
      int i;
      #pragma omp for private(i)
      for (i = 0; i < 10; i++)
      {
            /********/
      }
}
      

     

    

Is there any difference between using different synchronization objects supported by OpenMP and Win32api ?

Dear collegues,

Is there any difference between using :

omp_set_lock(...), omp_unset_lock(...),

Win32api EnterCriticalSection(&cs), LeaveCriticalSection(&cs)

#pragma omp critical { }

Thanks in advance.

Cheers, Arthur.

Putting Your Data and Code in Order: Data and layout - Part 2

In this pair of articles on performance and memory covers basic concepts to provide guidance to developers seeking to improve software performance. This paper expands on concepts discussed in Part 1, to consider parallelism, both vectorization (single instruction multiple data SIMD) as well as shared memory parallelism (threading), and distributed memory computing.
  • 开发人员
  • 学生
  • 服务器
  • Windows*
  • C/C++
  • Fortran
  • 中级
  • 英特尔® Advisor
  • 英特尔® Cilk™ Plus
  • Intel® Threading Building Blocks
  • Intel® Advanced Vector Extensions
  • OpenMP*
  • 代码现代化
  • Intel® Many Integrated Core Architecture
  • 优化
  • 并行计算
  • 线程
  • 矢量化
  • Inscreva-se agora: Workshop em Otimização de Código C/C++ - 28-29/Janeiro

    Participe do Workshop sobre otimização de software (com foco em C/C++) e computação paralela nos dias 28 e 29 de Janeiro no NCC/UNESP para processadores e co-processadores Intel. Data: 28, 29 de Janeiro, 2016 Local: UNESP/NCC - Rua Dr. Bento Teobaldo Ferraz, 271 - Bldg II São Paulo, SP - Brazil 01140-070
  • 开发人员
  • 合作伙伴
  • 专业版
  • 教授
  • 学生
  • Linux*
  • 服务器
  • C/C++
  • 入门级
  • 中级
  • 英特尔® Parallel Studio XE
  • HPC
  • C++
  • AVX
  • vetorização
  • computação paralela
  • Multithreading
  • openmp
  • otimização de software
  • MPI
  • Xeon Phi
  • Haswell
  • Cluster
  • Intel® Advanced Vector Extensions
  • 英特尔® SIMD 流指令扩展
  • OpenMP*
  • 学术
  • 集群计算
  • 代码现代化
  • 开发工具
  • 优化
  • 并行计算
  • 矢量化
  • Palestra: Como otimizar seu código sem ser um "ninja" em Computação Paralela

    Não perca a palestra "Como otimizar seu código sem ser um "ninja" em Computação Paralela" da Intel que será ministrada durante a Semana sobre Programação Massivamente Paralela em Petrópolis, RJ, no Laboratório Nacional de Computação Científica. Data: 02/02/2016 - 11h30 Local: LNCC - Av. Getúlio Vargas, 333 - Quitandinha - Petrópolis/RJ
  • 开发人员
  • 合作伙伴
  • 专业版
  • 教授
  • 学生
  • Linux*
  • Microsoft Windows* (XP, Vista, 7)
  • Microsoft Windows* 8.x
  • 服务器
  • C/C++
  • Python*
  • 英特尔® Parallel Studio XE Cluster Edition
  • Intel® Advanced Vector Extensions
  • OpenMP*
  • computação paralela
  • C/C++
  • openmp
  • Python
  • Big Data
  • otimização de código
  • AVX
  • parallel studio
  • Multithreading
  • multicore
  • manycore
  • Xeon Phi
  • 学术
  • 大数据
  • 集群计算
  • 代码现代化
  • 开发工具
  • 开源
  • 优化
  • 并行计算
  • 矢量化
  • Case Study: Optimized Code for Neural Cell Simulations

    Intel held the Intel® Modern Code Developer Challenge that had about 2,000 students from 130 universities in 19 countries registered to participate in the Challenge. They were provided access to Intel® Xeon Phi™ coprocessors to optimize code used in a CERN openlab brain simulation research project. In this article Daniel Vea Falguera (Modern Code Developer Challenge winner) shares how he optimized the code
  • 开发人员
  • 教授
  • 学生
  • Linux*
  • 服务器
  • C/C++
  • 中级
  • Intel® Advanced Vector Extensions
  • OpenMP*
  • Intel® Modern Code Developer Challenge
  • 学术
  • 代码现代化
  • Intel® Many Integrated Core Architecture
  • 线程
  • 矢量化
  • 订阅 OpenMP*