Developer Reference for Intel® oneAPI Math Kernel Library for Fortran

ID 766686
Date 11/07/2023
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

p?hemv

Computes a distributed matrix-vector product using a Hermitian matrix.

Syntax

call pchemv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy, jy, descy, incy)

call pzhemv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy, jy, descy, incy)

Include Files

  • mkl_pblas.h

Description

The p?hemv routines perform a distributed matrix-vector operation defined as

sub(y) := alpha*sub(A)*sub(x) + beta*sub(y),

where:

alpha and beta are scalars,

sub(A) is a n-by-n Hermitian distributed matrix, sub(A)=A(ia:ia+n-1, ja:ja+n-1) ,

sub(x) and sub(y) are distributed vectors.

sub(x) denotes X(ix, jx:jx+n-1) if incx = m_x, and X(ix: ix+n-1, jx) if incx = 1,

sub(y) denotes Y(iy, jy:jy+n-1) if incy = m_y, and Y(iy: iy+n-1, jy) if incy = 1.

Input Parameters

uplo

(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub(A) is used:

If uplo = 'U' or 'u', then the upper triangular part of the sub(A) is used.

If uplo = 'L' or 'l', then the low triangular part of the sub(A) is used.

n

(global) INTEGER. Specifies the order of the distributed matrix sub(A), n 0.

alpha

(global)COMPLEX for pchemv

DOUBLE COMPLEX for pzhemv

Specifies the scalar alpha.

a

(local)COMPLEX for pchemv

DOUBLE COMPLEX for pzhemv

Array, size (lld_a, LOCq(ja+n-1)). This array contains the local pieces of the distributed matrix sub(A).

Before entry when uplo = 'U' or 'u', the n-by-n upper triangular part of the distributed matrix sub(A) must contain the upper triangular part of the Hermitian distributed matrix and the strictly lower triangular part of sub(A) is not referenced, and when uplo = 'L' or 'l', the n-by-n lower triangular part of the distributed matrix sub(A) must contain the lower triangular part of the Hermitian distributed matrix and the strictly upper triangular part of sub(A) is not referenced.

ia, ja

(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub(A), respectively.

desca

(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.

x

(local)COMPLEX for pchemv

DOUBLE COMPLEX for pzhemv

Array, size at least (jx-1)*m_x + ix+(n-1)*abs(incx)).

This array contains the entries of the distributed vector sub(x).

ix, jx

(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub(x), respectively.

descx

(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.

incx

(global) INTEGER. Specifies the increment for the elements of sub(x). Only two values are supported, namely 1 and m_x. incx must not be zero.

beta

(global)COMPLEX for pchemv

DOUBLE COMPLEX for pzhemv

Specifies the scalar beta. When beta is set to zero, then sub(y) need not be set on input.

y

(local)COMPLEX for pchemv

DOUBLE COMPLEX for pzhemv

Array, size at least (jy-1)*m_y + iy+(n-1)*abs(incy)).

This array contains the entries of the distributed vector sub(y).

iy, jy

(global) INTEGER. The row and column indices in the distributed matrix Y indicating the first row and the first column of the submatrix sub(y), respectively.

descy

(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix Y.

incy

(global) INTEGER. Specifies the increment for the elements of sub(y). Only two values are supported, namely 1 and m_y. incy must not be zero.

Output Parameters

y

Overwritten by the updated distributed vector sub(y).